Split Syntheses: Introducing Bottom-Up Control over Aluminum in SSZ-13 and ZSM-5 Zeolites

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sven Robijns, Julien Devos, Beatrice Baeckelmans, Tom De Frene, Mostafa Torka Beydokhti, Rodrigo de Oliveira-Silva, Niels De Witte, Dimitrios Sakellariou, Tom R. C. Van Assche and Michiel Dusselier*, 
{"title":"Split Syntheses: Introducing Bottom-Up Control over Aluminum in SSZ-13 and ZSM-5 Zeolites","authors":"Sven Robijns,&nbsp;Julien Devos,&nbsp;Beatrice Baeckelmans,&nbsp;Tom De Frene,&nbsp;Mostafa Torka Beydokhti,&nbsp;Rodrigo de Oliveira-Silva,&nbsp;Niels De Witte,&nbsp;Dimitrios Sakellariou,&nbsp;Tom R. C. Van Assche and Michiel Dusselier*,&nbsp;","doi":"10.1021/jacsau.4c0055110.1021/jacsau.4c00551","DOIUrl":null,"url":null,"abstract":"<p >Zeolite synthesis is known as a difficult-to-control process, with many degrees of freedom that have a partially uncharted impact on the final product. Due to this, many zeolite scientists have regarded the initial mixing (aging) stage as the only time at which the chemical composition of a zeolite synthesis mixture can be impacted without heavily disrupting the delicate equilibria that are at play during crystallization. Recently, however, this view has started to change, with innovative techniques such as charge density mismatch or electro-assisted synthesis showing that the addition of new elements to the reactor midsynthesis might lead to new and surprising outcomes. In this manuscript, we show that by intermittent removal of certain fractions, notably Al-rich solids or Si-rich liquids, from the reaction medium during an interzeolite conversion from FAU-to-CHA (and FAU-to-MFI), one can control the Si/Al ratio of the final product, without heavily impacting the reaction time, particle size, or divalent cation capacity of the final product. This approach was named “split synthesis” and has led to several insights. By removing some Si-rich liquid phase after 40 min of synthesis, the Si/Al ratio of the daughter zeolite was lowered to a value of 20 (starting from 40), while the divalent cation capacity, a performance indicator for several acid and metal-catalyzed reactions, was kept maximized. On the other hand, when Al-rich solids were removed after 40 min (and in some cases colloidal silica was supplemented), we were able to rapidly synthesize small SSZ-13 zeolites with Si/Al ratios up to 180. These high-Si SSZ-13 zeolites had particle sizes in the range 100–150 nm and are traditionally difficult to crystallize in hydroxide medium. They showed a great olefin yield (6%) in the conversion of CO<sub>2</sub> and H<sub>2</sub> with ZnZrOx as cocatalyst.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 2","pages":"593–605 593–605"},"PeriodicalIF":8.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00551","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zeolite synthesis is known as a difficult-to-control process, with many degrees of freedom that have a partially uncharted impact on the final product. Due to this, many zeolite scientists have regarded the initial mixing (aging) stage as the only time at which the chemical composition of a zeolite synthesis mixture can be impacted without heavily disrupting the delicate equilibria that are at play during crystallization. Recently, however, this view has started to change, with innovative techniques such as charge density mismatch or electro-assisted synthesis showing that the addition of new elements to the reactor midsynthesis might lead to new and surprising outcomes. In this manuscript, we show that by intermittent removal of certain fractions, notably Al-rich solids or Si-rich liquids, from the reaction medium during an interzeolite conversion from FAU-to-CHA (and FAU-to-MFI), one can control the Si/Al ratio of the final product, without heavily impacting the reaction time, particle size, or divalent cation capacity of the final product. This approach was named “split synthesis” and has led to several insights. By removing some Si-rich liquid phase after 40 min of synthesis, the Si/Al ratio of the daughter zeolite was lowered to a value of 20 (starting from 40), while the divalent cation capacity, a performance indicator for several acid and metal-catalyzed reactions, was kept maximized. On the other hand, when Al-rich solids were removed after 40 min (and in some cases colloidal silica was supplemented), we were able to rapidly synthesize small SSZ-13 zeolites with Si/Al ratios up to 180. These high-Si SSZ-13 zeolites had particle sizes in the range 100–150 nm and are traditionally difficult to crystallize in hydroxide medium. They showed a great olefin yield (6%) in the conversion of CO2 and H2 with ZnZrOx as cocatalyst.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信