Lipid-Directed Covalent Labeling of Plasma Membranes for Long-Term Imaging, Barcoding and Manipulation of Cells

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nathan Aknine, Remi Pelletier and Andrey S. Klymchenko*, 
{"title":"Lipid-Directed Covalent Labeling of Plasma Membranes for Long-Term Imaging, Barcoding and Manipulation of Cells","authors":"Nathan Aknine,&nbsp;Remi Pelletier and Andrey S. Klymchenko*,&nbsp;","doi":"10.1021/jacsau.4c0113410.1021/jacsau.4c01134","DOIUrl":null,"url":null,"abstract":"<p >Fluorescent probes for cell plasma membranes (PM) generally exploit a noncovalent labeling mechanism, which constitutes a fundamental limitation in multiple bioimaging applications. Here, we report a concept of lipid-directed covalent labeling of PM, which exploits transient binding to the lipid membrane surface generating a high local dye concentration, thus favoring covalent ligation to random proximal membrane proteins. This concept yielded fluorescent probes for PM called MemGraft, which are built of a dye (cyanine Cy3 or Cy5) bearing a low-affinity membrane anchor and a reactive group: an activated ester or a maleimide. In contrast to specially designed control dyes and commercial Cy3-based labels of amino or thiol groups, MemGraft probes stain efficiently PM, revealing the crucial role of the membrane anchor combined with optimal reactivity of the activated ester or the maleimide. MemGraft probes overcome existing limitations of noncovalent probes, which makes them compatible with cell fixation, permeabilization, trypsinization, and the presence of serum. The latter allows long-term cell tracking and video imaging of cell PM dynamics without the signs of phototoxicity. The covalent strategy also enables staining and long-term tracking of cocultured cells labeled in different colors without exchange of probes. Moreover, the combination of MemGraft-Cy3 and MemGraft-Cy5 probes at different ratios enabled long-term cell barcoding in at least 5 color codes, important for tracking and visualizing multiple populations of cells. Ultimately, we found that the MemGraft strategy enables efficient biotinylation of the cell surface, opening the path to cell surface engineering and cell manipulation.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 2","pages":"922–936 922–936"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c01134","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c01134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescent probes for cell plasma membranes (PM) generally exploit a noncovalent labeling mechanism, which constitutes a fundamental limitation in multiple bioimaging applications. Here, we report a concept of lipid-directed covalent labeling of PM, which exploits transient binding to the lipid membrane surface generating a high local dye concentration, thus favoring covalent ligation to random proximal membrane proteins. This concept yielded fluorescent probes for PM called MemGraft, which are built of a dye (cyanine Cy3 or Cy5) bearing a low-affinity membrane anchor and a reactive group: an activated ester or a maleimide. In contrast to specially designed control dyes and commercial Cy3-based labels of amino or thiol groups, MemGraft probes stain efficiently PM, revealing the crucial role of the membrane anchor combined with optimal reactivity of the activated ester or the maleimide. MemGraft probes overcome existing limitations of noncovalent probes, which makes them compatible with cell fixation, permeabilization, trypsinization, and the presence of serum. The latter allows long-term cell tracking and video imaging of cell PM dynamics without the signs of phototoxicity. The covalent strategy also enables staining and long-term tracking of cocultured cells labeled in different colors without exchange of probes. Moreover, the combination of MemGraft-Cy3 and MemGraft-Cy5 probes at different ratios enabled long-term cell barcoding in at least 5 color codes, important for tracking and visualizing multiple populations of cells. Ultimately, we found that the MemGraft strategy enables efficient biotinylation of the cell surface, opening the path to cell surface engineering and cell manipulation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信