Solid-State-Electrolyte Reactor: New Opportunity for Electrifying Manufacture

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chunxiao Liu, Yuan Ji, Tingting Zheng* and Chuan Xia*, 
{"title":"Solid-State-Electrolyte Reactor: New Opportunity for Electrifying Manufacture","authors":"Chunxiao Liu,&nbsp;Yuan Ji,&nbsp;Tingting Zheng* and Chuan Xia*,&nbsp;","doi":"10.1021/jacsau.4c0118310.1021/jacsau.4c01183","DOIUrl":null,"url":null,"abstract":"<p >Electrocatalysis, which leverages renewable electricity, has emerged as a cornerstone technology in the transition toward sustainable energy and chemical production. However, traditional electrocatalytic systems often produce mixed, impure products, necessitating costly purification. Solid-state electrolyte (SSE) reactors represent a transformative advancement by enabling the direct production of high-purity chemicals, significantly reducing purification costs and energy consumption. The versatility of SSE reactors extends to applications such as CO<sub>2</sub> capture and tandem reactions, aligning with the green and decentralized production paradigm. This Perspective provides a comprehensive overview of SSE reactors, discussing their principles, design innovations, and applications in producing pure chemicals─such as liquid carbon fuels, hydrogen peroxide, and ammonia─directly from CO<sub>2</sub> and other sources. We further explore the potential of SSE reactors in applications such as CO<sub>2</sub> capture and tandem reactions, highlighting their compatibility with versatile production systems. Finally, we outline future research directions for SSE reactors, underscoring their role in advancing sustainable chemical manufacturing.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 2","pages":"521–535 521–535"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c01183","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c01183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalysis, which leverages renewable electricity, has emerged as a cornerstone technology in the transition toward sustainable energy and chemical production. However, traditional electrocatalytic systems often produce mixed, impure products, necessitating costly purification. Solid-state electrolyte (SSE) reactors represent a transformative advancement by enabling the direct production of high-purity chemicals, significantly reducing purification costs and energy consumption. The versatility of SSE reactors extends to applications such as CO2 capture and tandem reactions, aligning with the green and decentralized production paradigm. This Perspective provides a comprehensive overview of SSE reactors, discussing their principles, design innovations, and applications in producing pure chemicals─such as liquid carbon fuels, hydrogen peroxide, and ammonia─directly from CO2 and other sources. We further explore the potential of SSE reactors in applications such as CO2 capture and tandem reactions, highlighting their compatibility with versatile production systems. Finally, we outline future research directions for SSE reactors, underscoring their role in advancing sustainable chemical manufacturing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信