Visualizing Reactive Oxygen Species-Induced DNA Damage Process in Higher-Ordered Origami Nanostructures

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuangye Zhang, Xiaodong Xie, Hairuo Zhang, Ziwei Zhao, Kai Xia, Haitao Song, Qian Li, Mingqiang Li* and Zhilei Ge*, 
{"title":"Visualizing Reactive Oxygen Species-Induced DNA Damage Process in Higher-Ordered Origami Nanostructures","authors":"Shuangye Zhang,&nbsp;Xiaodong Xie,&nbsp;Hairuo Zhang,&nbsp;Ziwei Zhao,&nbsp;Kai Xia,&nbsp;Haitao Song,&nbsp;Qian Li,&nbsp;Mingqiang Li* and Zhilei Ge*,&nbsp;","doi":"10.1021/jacsau.4c0120310.1021/jacsau.4c01203","DOIUrl":null,"url":null,"abstract":"<p >The genetic information on organisms is stored in the cell nucleus in the form of higher-ordered DNA structures. Here, we use DNA framework nanostructures (DFNs) to simulate the compaction and stacking density of nucleosome DNA for precise conformational and structure determination, particularly the dynamic structural changes, preferential reaction regions, and sites of DFNs during the reactive oxygen species (ROS) reaction process. By developing an atomic force microscopy-based single-particle analysis (SPA) data reconstruction method to collect and reanalyze imaging information, we demonstrate that the geometric morphology of DFNs constrains their reaction kinetics with ROS, where local mechanical stress and regional base distribution are two key factors affecting their kinetics. Furthermore, we plot the reaction process diagram for ROS and DFNs, showing the reaction process and intermediate products with individual activation energies. This SPA method offers new research tools and insights for studying the dynamic changes of highly folded and organized DNA structural domains within the nucleus and helps to reveal the key mechanisms behind their functional differences in topologically associating domains.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 2","pages":"965–974 965–974"},"PeriodicalIF":8.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c01203","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c01203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The genetic information on organisms is stored in the cell nucleus in the form of higher-ordered DNA structures. Here, we use DNA framework nanostructures (DFNs) to simulate the compaction and stacking density of nucleosome DNA for precise conformational and structure determination, particularly the dynamic structural changes, preferential reaction regions, and sites of DFNs during the reactive oxygen species (ROS) reaction process. By developing an atomic force microscopy-based single-particle analysis (SPA) data reconstruction method to collect and reanalyze imaging information, we demonstrate that the geometric morphology of DFNs constrains their reaction kinetics with ROS, where local mechanical stress and regional base distribution are two key factors affecting their kinetics. Furthermore, we plot the reaction process diagram for ROS and DFNs, showing the reaction process and intermediate products with individual activation energies. This SPA method offers new research tools and insights for studying the dynamic changes of highly folded and organized DNA structural domains within the nucleus and helps to reveal the key mechanisms behind their functional differences in topologically associating domains.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信