Explainable multiscale temporal convolutional neural network model for sleep stage detection based on electroencephalogram activities.

Chun-Ren Phang, Akimasa Hirata
{"title":"Explainable multiscale temporal convolutional neural network model for sleep stage detection based on electroencephalogram activities.","authors":"Chun-Ren Phang, Akimasa Hirata","doi":"10.1088/1741-2552/adb90c","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Humans spend a significant portion of their lives in sleep (an essential driver of body metabolism). Moreover, as sleep deprivation could cause various health complications, it is crucial to develop an automatic sleep stage detection model to facilitate the tedious manual labeling process. Notably, recently proposed sleep staging algorithms lack model explainability and still require performance improvement.<i>Approach.</i>We implemented multiscale neurophysiology-mimicking kernels to capture sleep-related electroencephalogram (EEG) activities at varying frequencies and temporal lengths; the implemented model was named 'multiscale temporal convolutional neural network (MTCNN).' Further, we evaluated its performance using an open-source dataset (Sleep-EDF Database Expanded comprising 153 d of polysomnogram data).<i>Main results.</i>By investigating the learned kernel weights, we observed that MTCNN detected the EEG activities specific to each sleep stage, such as the frequencies, K-complexes, and sawtooth waves. Furthermore, regarding the characterization of these neurophysiologically significant features, MTCNN demonstrated an overall accuracy (OAcc) of 91.12% and a Cohen kappa coefficient of 0.86 in the cross-subject paradigm. Notably, it demonstrated an OAcc of 88.24% and a Cohen kappa coefficient of 0.80 in the leave-few-days-out analysis. Our MTCNN model also outperformed the existing deep learning models in sleep stage classification even when it was trained with only 16% of the total EEG data, achieving an OAcc of 85.62% and a Cohen kappa coefficient of 0.75 on the remaining 84% of testing data.<i>Significance.</i>The proposed MTCNN enables model explainability and it can be trained with lesser amount of data, which is beneficial to its application in the real-world because large amounts of training data are not often and readily available.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adb90c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Humans spend a significant portion of their lives in sleep (an essential driver of body metabolism). Moreover, as sleep deprivation could cause various health complications, it is crucial to develop an automatic sleep stage detection model to facilitate the tedious manual labeling process. Notably, recently proposed sleep staging algorithms lack model explainability and still require performance improvement.Approach.We implemented multiscale neurophysiology-mimicking kernels to capture sleep-related electroencephalogram (EEG) activities at varying frequencies and temporal lengths; the implemented model was named 'multiscale temporal convolutional neural network (MTCNN).' Further, we evaluated its performance using an open-source dataset (Sleep-EDF Database Expanded comprising 153 d of polysomnogram data).Main results.By investigating the learned kernel weights, we observed that MTCNN detected the EEG activities specific to each sleep stage, such as the frequencies, K-complexes, and sawtooth waves. Furthermore, regarding the characterization of these neurophysiologically significant features, MTCNN demonstrated an overall accuracy (OAcc) of 91.12% and a Cohen kappa coefficient of 0.86 in the cross-subject paradigm. Notably, it demonstrated an OAcc of 88.24% and a Cohen kappa coefficient of 0.80 in the leave-few-days-out analysis. Our MTCNN model also outperformed the existing deep learning models in sleep stage classification even when it was trained with only 16% of the total EEG data, achieving an OAcc of 85.62% and a Cohen kappa coefficient of 0.75 on the remaining 84% of testing data.Significance.The proposed MTCNN enables model explainability and it can be trained with lesser amount of data, which is beneficial to its application in the real-world because large amounts of training data are not often and readily available.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信