Crash risk prediction and analysis from the perspective of alignment and environment features: A study on an expressway in a hilly area.

IF 1.6 3区 工程技术 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Pengcheng Qin, Jie He, Changjian Zhang, Xintong Yan, Chenwei Wang, Yuntao Ye, Zhiming Fang
{"title":"Crash risk prediction and analysis from the perspective of alignment and environment features: A study on an expressway in a hilly area.","authors":"Pengcheng Qin, Jie He, Changjian Zhang, Xintong Yan, Chenwei Wang, Yuntao Ye, Zhiming Fang","doi":"10.1080/15389588.2025.2459297","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Expressways in hilly areas feature complex alignment and environments constrained by terrain conditions, significantly threatening life and property safety. This study aims to investigate crash risk prediction of expressways in hilly areas through alignment and environment features and identify determinants of the high risk for safety improvement.</p><p><strong>Methods: </strong>Based on 5 years of crash data on casualties and property damage of an expressway in southwestern China, the order technique and five clustering algorithms were employed to determine and classify risk levels. Environment features were extracted by semantic segmentation with a DeepLabv3 model. The study established four ensemble learning models to predict crash risks, and the interpretable model approach was adopted to understand contributing features.</p><p><strong>Results: </strong>XGBoost achieved the best overall performance, with the accuracy and F1 score reaching 0.9259 and 0.8886. The proportion and variation rate of trucks and cars, and the proportions of constructions and the road positively correlated with high risks, while the proportions of the vegetation and road had negative correlations. The horizontal and vertical alignments, including long steep slopes, smaller curve radii, shorter transition curves, and smaller convex and concave curves radii, were linked to high risks.</p><p><strong>Conclusions: </strong>This study proposes an approach to predict crash risks on road sections without historical crash data. Combining the XGBoost model with the SHAP approach, enables accurate identification of risks on expressways in hilly areas using alignment and environment features and enhances the understanding of how these factors contribute to high risks.</p>","PeriodicalId":54422,"journal":{"name":"Traffic Injury Prevention","volume":" ","pages":"1-11"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic Injury Prevention","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15389588.2025.2459297","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Expressways in hilly areas feature complex alignment and environments constrained by terrain conditions, significantly threatening life and property safety. This study aims to investigate crash risk prediction of expressways in hilly areas through alignment and environment features and identify determinants of the high risk for safety improvement.

Methods: Based on 5 years of crash data on casualties and property damage of an expressway in southwestern China, the order technique and five clustering algorithms were employed to determine and classify risk levels. Environment features were extracted by semantic segmentation with a DeepLabv3 model. The study established four ensemble learning models to predict crash risks, and the interpretable model approach was adopted to understand contributing features.

Results: XGBoost achieved the best overall performance, with the accuracy and F1 score reaching 0.9259 and 0.8886. The proportion and variation rate of trucks and cars, and the proportions of constructions and the road positively correlated with high risks, while the proportions of the vegetation and road had negative correlations. The horizontal and vertical alignments, including long steep slopes, smaller curve radii, shorter transition curves, and smaller convex and concave curves radii, were linked to high risks.

Conclusions: This study proposes an approach to predict crash risks on road sections without historical crash data. Combining the XGBoost model with the SHAP approach, enables accurate identification of risks on expressways in hilly areas using alignment and environment features and enhances the understanding of how these factors contribute to high risks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Traffic Injury Prevention
Traffic Injury Prevention PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
3.60
自引率
10.00%
发文量
137
审稿时长
3 months
期刊介绍: The purpose of Traffic Injury Prevention is to bridge the disciplines of medicine, engineering, public health and traffic safety in order to foster the science of traffic injury prevention. The archival journal focuses on research, interventions and evaluations within the areas of traffic safety, crash causation, injury prevention and treatment. General topics within the journal''s scope are driver behavior, road infrastructure, emerging crash avoidance technologies, crash and injury epidemiology, alcohol and drugs, impact injury biomechanics, vehicle crashworthiness, occupant restraints, pedestrian safety, evaluation of interventions, economic consequences and emergency and clinical care with specific application to traffic injury prevention. The journal includes full length papers, review articles, case studies, brief technical notes and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信