Water outage predictions for natural hazards using synthetic water distribution systems.

IF 3 3区 医学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Risk Analysis Pub Date : 2025-02-21 DOI:10.1111/risa.70004
Zaira Pagan-Cajigas, Seth Guikema, Rosalia Otaduy-Ramirez, Vanessa Woolley, Kaleb Smith, Tongxing Hu, Thomas Chen
{"title":"Water outage predictions for natural hazards using synthetic water distribution systems.","authors":"Zaira Pagan-Cajigas, Seth Guikema, Rosalia Otaduy-Ramirez, Vanessa Woolley, Kaleb Smith, Tongxing Hu, Thomas Chen","doi":"10.1111/risa.70004","DOIUrl":null,"url":null,"abstract":"<p><p>Hazards can impact water systems, leading to water outages that result in economic, environmental, and societal losses. Modeling a system's behavior helps develop short-term restoration strategies and long-term resilience planning. However, data on the topology and operational characteristics of real water systems are often unavailable outside of the utility operating the system, limiting the ability of others depending on the system to understand its vulnerability and resilience. We address this limitation by developing an algorithm that generates a synthetic water distribution system using only publicly available data. Our approach provides hydraulic information at the building level to support infrastructure resilience assessments. We validated our model by comparing the network topologic and hydraulic properties with data from the real water system of Ann Arbor, Michigan. Our synthetic model results indicate that 95% of the simulated building-level pressures were within <math> <semantics><mrow><mo>±</mo> <mspace></mspace> <mn>25</mn></mrow> <annotation>$ \\pm \\;25$</annotation></semantics> </math> PSI of the hydraulic model data from the existing system. To demonstrate an application of our model, we simulated water outages at the building level using hazard loading and fragility functions corresponding to an earthquake scenario.</p>","PeriodicalId":21472,"journal":{"name":"Risk Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/risa.70004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Hazards can impact water systems, leading to water outages that result in economic, environmental, and societal losses. Modeling a system's behavior helps develop short-term restoration strategies and long-term resilience planning. However, data on the topology and operational characteristics of real water systems are often unavailable outside of the utility operating the system, limiting the ability of others depending on the system to understand its vulnerability and resilience. We address this limitation by developing an algorithm that generates a synthetic water distribution system using only publicly available data. Our approach provides hydraulic information at the building level to support infrastructure resilience assessments. We validated our model by comparing the network topologic and hydraulic properties with data from the real water system of Ann Arbor, Michigan. Our synthetic model results indicate that 95% of the simulated building-level pressures were within ± 25 $ \pm \;25$ PSI of the hydraulic model data from the existing system. To demonstrate an application of our model, we simulated water outages at the building level using hazard loading and fragility functions corresponding to an earthquake scenario.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Risk Analysis
Risk Analysis 数学-数学跨学科应用
CiteScore
7.50
自引率
10.50%
发文量
183
审稿时长
4.2 months
期刊介绍: Published on behalf of the Society for Risk Analysis, Risk Analysis is ranked among the top 10 journals in the ISI Journal Citation Reports under the social sciences, mathematical methods category, and provides a focal point for new developments in the field of risk analysis. This international peer-reviewed journal is committed to publishing critical empirical research and commentaries dealing with risk issues. The topics covered include: • Human health and safety risks • Microbial risks • Engineering • Mathematical modeling • Risk characterization • Risk communication • Risk management and decision-making • Risk perception, acceptability, and ethics • Laws and regulatory policy • Ecological risks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信