Predicting Parkinson's disease trajectory using clinical and functional MRI features: A reproduction and replication study.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-02-21 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0317566
Elodie Germani, Nikhil Bhagwat, Mathieu Dugré, Rémi Gau, Albert A Montillo, Kevin P Nguyen, Andrzej Sokolowski, Madeleine Sharp, Jean-Baptiste Poline, Tristan Glatard
{"title":"Predicting Parkinson's disease trajectory using clinical and functional MRI features: A reproduction and replication study.","authors":"Elodie Germani, Nikhil Bhagwat, Mathieu Dugré, Rémi Gau, Albert A Montillo, Kevin P Nguyen, Andrzej Sokolowski, Madeleine Sharp, Jean-Baptiste Poline, Tristan Glatard","doi":"10.1371/journal.pone.0317566","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a common neurodegenerative disorder with a poorly understood physiopathology and no established biomarkers for the diagnosis of early stages and for prediction of disease progression. Several neuroimaging biomarkers have been studied recently, but these are susceptible to several sources of variability related for instance to cohort selection or image analysis. In this context, an evaluation of the robustness of such biomarkers to variations in the data processing workflow is essential. This study is part of a larger project investigating the replicability of potential neuroimaging biomarkers of PD. Here, we attempt to fully reproduce (reimplementing the experiments with the same methods, including data collection from the same database) and replicate (different data and/or method) the models described in (Nguyen et al., 2021) to predict individual's PD current state and progression using demographic, clinical and neuroimaging features (fALFF and ReHo extracted from resting-state fMRI). We use the Parkinson's Progression Markers Initiative dataset (PPMI, ppmi-info.org), as in (Nguyen et al., 2021) and aim to reproduce the original cohort, imaging features and machine learning models as closely as possible using the information available in the paper and the code. We also investigated methodological variations in cohort selection, feature extraction pipelines and sets of input features. Different criteria were used to evaluate the reproduction attempt and compare the results with the original ones. Notably, we obtained significantly better than chance performance using the analysis pipeline closest to that in the original study (R2 > 0), which is consistent with its findings. In addition, we performed a partial reproduction using derived data provided by the authors of the original study, and we obtained results that were close to the original ones. The challenges encountered while attempting to reproduce (fully and partially) and replicating the original work are likely explained by the complexity of neuroimaging studies, in particular in clinical settings. We provide recommendations to further facilitate the reproducibility of such studies in the future.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 2","pages":"e0317566"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0317566","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD) is a common neurodegenerative disorder with a poorly understood physiopathology and no established biomarkers for the diagnosis of early stages and for prediction of disease progression. Several neuroimaging biomarkers have been studied recently, but these are susceptible to several sources of variability related for instance to cohort selection or image analysis. In this context, an evaluation of the robustness of such biomarkers to variations in the data processing workflow is essential. This study is part of a larger project investigating the replicability of potential neuroimaging biomarkers of PD. Here, we attempt to fully reproduce (reimplementing the experiments with the same methods, including data collection from the same database) and replicate (different data and/or method) the models described in (Nguyen et al., 2021) to predict individual's PD current state and progression using demographic, clinical and neuroimaging features (fALFF and ReHo extracted from resting-state fMRI). We use the Parkinson's Progression Markers Initiative dataset (PPMI, ppmi-info.org), as in (Nguyen et al., 2021) and aim to reproduce the original cohort, imaging features and machine learning models as closely as possible using the information available in the paper and the code. We also investigated methodological variations in cohort selection, feature extraction pipelines and sets of input features. Different criteria were used to evaluate the reproduction attempt and compare the results with the original ones. Notably, we obtained significantly better than chance performance using the analysis pipeline closest to that in the original study (R2 > 0), which is consistent with its findings. In addition, we performed a partial reproduction using derived data provided by the authors of the original study, and we obtained results that were close to the original ones. The challenges encountered while attempting to reproduce (fully and partially) and replicating the original work are likely explained by the complexity of neuroimaging studies, in particular in clinical settings. We provide recommendations to further facilitate the reproducibility of such studies in the future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信