Sandrine Vuillaumier-Barrot, Thierry Dupré, Tiffany Andriantsihoarana, Vincent Desportes, David Cheillan, Stuart E H Moore, Isabelle Chantret
{"title":"An ALG12-CDG patient with a novel homozygous intronic mutation associated with low ALG12 mRNA.","authors":"Sandrine Vuillaumier-Barrot, Thierry Dupré, Tiffany Andriantsihoarana, Vincent Desportes, David Cheillan, Stuart E H Moore, Isabelle Chantret","doi":"10.1186/s13023-025-03535-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Type I Congenital Disorders of Glycosylation (CDG-I) are inherited diseases presenting deficits in protein N-glycosylation involving either the biosynthesis of the lipid-linked oligosaccharide Glc<sub>3</sub>Man<sub>9</sub>GlcNAc<sub>2</sub>-PP-dolichol or transfer of its oligosaccharide to protein.</p><p><strong>Results: </strong>We describe a patient harbouring hypoglycosylated transferrin, a characteristic of CDG-I. NGS revealed a homozygous RFT1 (c.16G > T p.Val6Leu) variant of unknown significance that is predicted to be benign. Metabolic radiolabelling of the patient's fibroblasts did not reveal the accumulation of truncated Man<sub>5</sub>GlcNAc<sub>2</sub>-PP-dolichol expected of RFT1-CDG but rather an accumulation of Man<sub>7</sub>GlcNAc<sub>2</sub>-PP-dolichol, characteristic of ALG12-CDG. Revaluation of the NGS data revealed a homozygous (22_50311909A_G, c.-79 + 2 T > C) variant that modifies the second nucleotide of the first intron of the ALG12 gene upstream of the first coding exon (exon 2). Sequencing of ALG12 cDNA revealed a 4-base insertion between exon 1 and exon 2 suggesting a shift in mRNA splicing in this intron to a putative new GU donor site. The patient's fibroblasts display 3% of control ALG12 mRNA levels.</p><p><strong>Conclusion: </strong>This is the first description of a pathogenic intronic ALG12 variant upstream of the first coding exon. The modification of the splicing process between intron 1 and exon 2, the very low transcript level and the absence of other mutations in the patient's ALG12 gene lead us to conclude that this ALG12 variant is a predicted Loss of Function (pLOF) variant.</p>","PeriodicalId":19651,"journal":{"name":"Orphanet Journal of Rare Diseases","volume":"20 1","pages":"81"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orphanet Journal of Rare Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13023-025-03535-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Type I Congenital Disorders of Glycosylation (CDG-I) are inherited diseases presenting deficits in protein N-glycosylation involving either the biosynthesis of the lipid-linked oligosaccharide Glc3Man9GlcNAc2-PP-dolichol or transfer of its oligosaccharide to protein.
Results: We describe a patient harbouring hypoglycosylated transferrin, a characteristic of CDG-I. NGS revealed a homozygous RFT1 (c.16G > T p.Val6Leu) variant of unknown significance that is predicted to be benign. Metabolic radiolabelling of the patient's fibroblasts did not reveal the accumulation of truncated Man5GlcNAc2-PP-dolichol expected of RFT1-CDG but rather an accumulation of Man7GlcNAc2-PP-dolichol, characteristic of ALG12-CDG. Revaluation of the NGS data revealed a homozygous (22_50311909A_G, c.-79 + 2 T > C) variant that modifies the second nucleotide of the first intron of the ALG12 gene upstream of the first coding exon (exon 2). Sequencing of ALG12 cDNA revealed a 4-base insertion between exon 1 and exon 2 suggesting a shift in mRNA splicing in this intron to a putative new GU donor site. The patient's fibroblasts display 3% of control ALG12 mRNA levels.
Conclusion: This is the first description of a pathogenic intronic ALG12 variant upstream of the first coding exon. The modification of the splicing process between intron 1 and exon 2, the very low transcript level and the absence of other mutations in the patient's ALG12 gene lead us to conclude that this ALG12 variant is a predicted Loss of Function (pLOF) variant.
期刊介绍:
Orphanet Journal of Rare Diseases is an open access, peer-reviewed journal that encompasses all aspects of rare diseases and orphan drugs. The journal publishes high-quality reviews on specific rare diseases. In addition, the journal may consider articles on clinical trial outcome reports, either positive or negative, and articles on public health issues in the field of rare diseases and orphan drugs. The journal does not accept case reports.