Elan Hahn, Avinash V Dharmadhikari, Alexander L Markowitz, Dolores Estrine, Catherine Quindipan, Simran D S Maggo, Ankit Sharma, Brian Lee, Dennis T Maglinte, Soheil Shams, Matthew A Deardorff, Jaclyn A Biegel, Xiaowu Gai, Miao Sun, Ryan J Schmidt, Gordana Raca, Jianling Ji
{"title":"Copy number variant analysis improves diagnostic yield in a diverse pediatric exome sequencing cohort.","authors":"Elan Hahn, Avinash V Dharmadhikari, Alexander L Markowitz, Dolores Estrine, Catherine Quindipan, Simran D S Maggo, Ankit Sharma, Brian Lee, Dennis T Maglinte, Soheil Shams, Matthew A Deardorff, Jaclyn A Biegel, Xiaowu Gai, Miao Sun, Ryan J Schmidt, Gordana Raca, Jianling Ji","doi":"10.1038/s41525-025-00478-4","DOIUrl":null,"url":null,"abstract":"<p><p>Exome sequencing is the current standard for diagnosing Mendelian disorders; however, it is generally not considered the first-line test for detecting copy number variants (CNVs). We retrospectively investigated the additional diagnostic yield by performing concurrent CNV analysis using exome data in a large and diverse pediatric cohort. Patients were referred from various sources with variable phenotypes. Human Phenotype Ontology terms were used to prioritize variants for analysis. Ancestry and CNV analyses were performed using Somalier and NxClinical, respectively. A total of 1538 patients were tested, with the majority being Admixed Americans. Diagnostic CNVs were identified in 70 patients (4.6%), ranging from exonic deletions to large, unbalanced rearrangements, aneuploidies, and mosaic findings. While no significant differences were identified in diagnostic yield, or rates of negative or uncertain diagnoses, between ancestries, our study demonstrates the feasibility and increased yield of CNV analysis of exome data, across multiple phenotypes, referral sources, and ancestries.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"10 1","pages":"16"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845629/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-025-00478-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Exome sequencing is the current standard for diagnosing Mendelian disorders; however, it is generally not considered the first-line test for detecting copy number variants (CNVs). We retrospectively investigated the additional diagnostic yield by performing concurrent CNV analysis using exome data in a large and diverse pediatric cohort. Patients were referred from various sources with variable phenotypes. Human Phenotype Ontology terms were used to prioritize variants for analysis. Ancestry and CNV analyses were performed using Somalier and NxClinical, respectively. A total of 1538 patients were tested, with the majority being Admixed Americans. Diagnostic CNVs were identified in 70 patients (4.6%), ranging from exonic deletions to large, unbalanced rearrangements, aneuploidies, and mosaic findings. While no significant differences were identified in diagnostic yield, or rates of negative or uncertain diagnoses, between ancestries, our study demonstrates the feasibility and increased yield of CNV analysis of exome data, across multiple phenotypes, referral sources, and ancestries.
NPJ Genomic MedicineBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍:
npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine.
The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.