{"title":"Role of anisotropic confining potential and elliptical driving in dynamics of a Ge hole qubit.","authors":"Bashab Dey, John Schliemann","doi":"10.1088/1361-648X/adb927","DOIUrl":null,"url":null,"abstract":"<p><p>The squeezing of a Ge planar quantum dot enhances the Rabi frequency of electric dipole spin resonance by several orders of magnitude due to a strong Direct Rashba spin-orbit interaction in such geometries (Bosco<i>et al</i>2021<i>Phys. Rev.</i>B<b>104</b>115425). We investigate the geometric effect of an elliptical (squeezed) confinement and its interplay with the polarization of driving field in determining the Rabi frequency of a heavy-hole qubit in a planar Ge quantum dot. To calculate the Rabi frequency, we consider only the<i>p</i>-linear SOIs viz. electron-like Rashba, hole-like Rashba and hole-like Dresselhaus which are claimed to be the dominant ones by recent studies on planar Ge heterostructures. We derive approximate analytical expressions of the Rabi frequency using a Schrieffer-Wolff transformation for small SOI and driving strengths. Firstly, for an out-of-plane magnetic field with magnitude<i>B</i>, we get an operating region with respect to<i>B</i>, squeezing and polarization parameters where the qubit can be operated to obtain 'clean' Rabi flips. On and close to the boundaries of the region, the higher orbital levels strongly interfere with the two-level qubit subspace and destroy the Rabi oscillations, thereby putting a limitation on squeezing of the confinement. The Rabi frequency shows different behaviour for electron-like and hole-like Rashba SOIs. It vanishes for right (left) circular polarization in presence of purely electron-like (hole-like) Rashba SOI in a circular confinement. For both in- and out-of-plane magnetic fields, higher Rabi frequencies are achieved for squeezed configurations when the ellipses of polarization and the confinement equipotential have their major axes aligned but with different eccentricities. We also deduce a simple formula to calculate the effective heavy hole mass by measuring the Rabi frequencies using this setup.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adb927","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The squeezing of a Ge planar quantum dot enhances the Rabi frequency of electric dipole spin resonance by several orders of magnitude due to a strong Direct Rashba spin-orbit interaction in such geometries (Boscoet al2021Phys. Rev.B104115425). We investigate the geometric effect of an elliptical (squeezed) confinement and its interplay with the polarization of driving field in determining the Rabi frequency of a heavy-hole qubit in a planar Ge quantum dot. To calculate the Rabi frequency, we consider only thep-linear SOIs viz. electron-like Rashba, hole-like Rashba and hole-like Dresselhaus which are claimed to be the dominant ones by recent studies on planar Ge heterostructures. We derive approximate analytical expressions of the Rabi frequency using a Schrieffer-Wolff transformation for small SOI and driving strengths. Firstly, for an out-of-plane magnetic field with magnitudeB, we get an operating region with respect toB, squeezing and polarization parameters where the qubit can be operated to obtain 'clean' Rabi flips. On and close to the boundaries of the region, the higher orbital levels strongly interfere with the two-level qubit subspace and destroy the Rabi oscillations, thereby putting a limitation on squeezing of the confinement. The Rabi frequency shows different behaviour for electron-like and hole-like Rashba SOIs. It vanishes for right (left) circular polarization in presence of purely electron-like (hole-like) Rashba SOI in a circular confinement. For both in- and out-of-plane magnetic fields, higher Rabi frequencies are achieved for squeezed configurations when the ellipses of polarization and the confinement equipotential have their major axes aligned but with different eccentricities. We also deduce a simple formula to calculate the effective heavy hole mass by measuring the Rabi frequencies using this setup.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.