{"title":"Targeting the USP7-CDK1 axis suppresses estrogen receptor-positive breast cancer progression.","authors":"Joseph Lin, Yueh-Te Lin, Kai-Wen Hsu, Yi-En Liu, Yun-Cen Chen, Yung-Liang Yeh, Hsin-Ya Huang, Chang-Chi Hsieh, Dar-Ren Chen, Han-Tsang Wu","doi":"10.1186/s12935-025-03693-2","DOIUrl":null,"url":null,"abstract":"<p><p>Estrogen receptor-positive breast cancer (ERPBC) accounts for approximately 70% of breast cancers in women worldwide. The therapeutic strategy process for ERPBC is well-established and significantly reduces the mortality rate. The discovery of new therapeutic targets remains essential for ERPBC patients with metastasis or endocrine resistance. This study indicated that USP7 is highly expressed in ERBPC and promotes tumor progression and metastasis. Inhibition of USP7 activity repressed proliferation, induced apoptosis, suppressed migration and invasive activities, and reversed the epithelial-mesenchymal transition of ERPBC. Mass spectrometry analysis indicated that USP7 regulates CDK1 expression, which is highly expressed and correlates with a poor overall survival rate in ERPBC. USP7 directly interacts with CDK1 and regulates its stability. The combined inhibition of USP7 and CDK1 by GNE-6776 and Ro-3306 synergistically represses the malignant process and metastasis of ERPBC. These findings proved that targeting USP7 and CDK1 is a potential strategy for overcoming endocrine resistance in patients with advanced ERPBC.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"60"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03693-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Estrogen receptor-positive breast cancer (ERPBC) accounts for approximately 70% of breast cancers in women worldwide. The therapeutic strategy process for ERPBC is well-established and significantly reduces the mortality rate. The discovery of new therapeutic targets remains essential for ERPBC patients with metastasis or endocrine resistance. This study indicated that USP7 is highly expressed in ERBPC and promotes tumor progression and metastasis. Inhibition of USP7 activity repressed proliferation, induced apoptosis, suppressed migration and invasive activities, and reversed the epithelial-mesenchymal transition of ERPBC. Mass spectrometry analysis indicated that USP7 regulates CDK1 expression, which is highly expressed and correlates with a poor overall survival rate in ERPBC. USP7 directly interacts with CDK1 and regulates its stability. The combined inhibition of USP7 and CDK1 by GNE-6776 and Ro-3306 synergistically represses the malignant process and metastasis of ERPBC. These findings proved that targeting USP7 and CDK1 is a potential strategy for overcoming endocrine resistance in patients with advanced ERPBC.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.