Targeting the USP7-CDK1 axis suppresses estrogen receptor-positive breast cancer progression.

IF 5.3 2区 医学 Q1 ONCOLOGY
Joseph Lin, Yueh-Te Lin, Kai-Wen Hsu, Yi-En Liu, Yun-Cen Chen, Yung-Liang Yeh, Hsin-Ya Huang, Chang-Chi Hsieh, Dar-Ren Chen, Han-Tsang Wu
{"title":"Targeting the USP7-CDK1 axis suppresses estrogen receptor-positive breast cancer progression.","authors":"Joseph Lin, Yueh-Te Lin, Kai-Wen Hsu, Yi-En Liu, Yun-Cen Chen, Yung-Liang Yeh, Hsin-Ya Huang, Chang-Chi Hsieh, Dar-Ren Chen, Han-Tsang Wu","doi":"10.1186/s12935-025-03693-2","DOIUrl":null,"url":null,"abstract":"<p><p>Estrogen receptor-positive breast cancer (ERPBC) accounts for approximately 70% of breast cancers in women worldwide. The therapeutic strategy process for ERPBC is well-established and significantly reduces the mortality rate. The discovery of new therapeutic targets remains essential for ERPBC patients with metastasis or endocrine resistance. This study indicated that USP7 is highly expressed in ERBPC and promotes tumor progression and metastasis. Inhibition of USP7 activity repressed proliferation, induced apoptosis, suppressed migration and invasive activities, and reversed the epithelial-mesenchymal transition of ERPBC. Mass spectrometry analysis indicated that USP7 regulates CDK1 expression, which is highly expressed and correlates with a poor overall survival rate in ERPBC. USP7 directly interacts with CDK1 and regulates its stability. The combined inhibition of USP7 and CDK1 by GNE-6776 and Ro-3306 synergistically represses the malignant process and metastasis of ERPBC. These findings proved that targeting USP7 and CDK1 is a potential strategy for overcoming endocrine resistance in patients with advanced ERPBC.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"60"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03693-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Estrogen receptor-positive breast cancer (ERPBC) accounts for approximately 70% of breast cancers in women worldwide. The therapeutic strategy process for ERPBC is well-established and significantly reduces the mortality rate. The discovery of new therapeutic targets remains essential for ERPBC patients with metastasis or endocrine resistance. This study indicated that USP7 is highly expressed in ERBPC and promotes tumor progression and metastasis. Inhibition of USP7 activity repressed proliferation, induced apoptosis, suppressed migration and invasive activities, and reversed the epithelial-mesenchymal transition of ERPBC. Mass spectrometry analysis indicated that USP7 regulates CDK1 expression, which is highly expressed and correlates with a poor overall survival rate in ERPBC. USP7 directly interacts with CDK1 and regulates its stability. The combined inhibition of USP7 and CDK1 by GNE-6776 and Ro-3306 synergistically represses the malignant process and metastasis of ERPBC. These findings proved that targeting USP7 and CDK1 is a potential strategy for overcoming endocrine resistance in patients with advanced ERPBC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.90
自引率
1.70%
发文量
360
审稿时长
1 months
期刊介绍: Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques. The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors. Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信