Deficiency in nucleoside diphosphate kinase B leads to endothelial activation of the hexosamine biosynthesis pathway and cardiac dysfunction.

IF 8.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Feng Shao, Johanna Wieland, Yixin Wang, Merve Keles, Zenghui Meng, Santosh Lomada, Miao Qin, Veronika Leiss, Abel Martin-Garrido, Manuela Fuhrmann, Yi Qiu, Trogisch Felix, Christiane Vettel, Joerg Heineke, Yuxi Feng
{"title":"Deficiency in nucleoside diphosphate kinase B leads to endothelial activation of the hexosamine biosynthesis pathway and cardiac dysfunction.","authors":"Feng Shao, Johanna Wieland, Yixin Wang, Merve Keles, Zenghui Meng, Santosh Lomada, Miao Qin, Veronika Leiss, Abel Martin-Garrido, Manuela Fuhrmann, Yi Qiu, Trogisch Felix, Christiane Vettel, Joerg Heineke, Yuxi Feng","doi":"10.1186/s12933-025-02633-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nucleoside diphosphate kinase B (NDPKB) deficiency in endothelial cells (ECs) promotes the activation of the hexosamine biosynthesis pathway (HBP), leading to vascular damage in the retina. The aim of this study was to investigate the consequences of NDPKB deficiency in the mouse heart.</p><p><strong>Methods: </strong>NDPKB deficient mice were used in the study. Echocardiography was employed to assess cardiac function in vivo. Characterization of contractility in hiPSC-derived cardiomyocytes (hiPSC-CMs) was measured with the IonOptix contractility system. Immunoblotting and immunofluorescence were carried out to analyze the expression and localization of proteins in cultured cells and left ventricles (LVs).</p><p><strong>Results: </strong>NDPKB deficient mice displayed impaired glucose tolerance and increased heart weight compared to controls. Echocardiographic analysis revealed an increase in the diastolic diameter of the left ventricular posterior wall (LVPW), a decrease in the early diastolic mitral valve E and E' wave, and in the ratios of E/A and E'/A' in NDPKB deficient hearts, suggesting cardiac hypertrophy and diastolic dysfunction. In line with cardiac dysfunction, the phosphorylation of myocardial phospholamban (PLN) and the expression of sarcoplasmic/endoplasmic reticulum Ca<sup>2+</sup>-ATPase 2 (SERCA2) in the NDPKB deficient LVs were significantly reduced. Moreover, the accumulation of collagen, fibronectin as well as the upregulation of transforming growth factor β (TGF-β), were detected in NDPKB deficient LVs. In addition, activation of the HBP and its downstream O-GlcNAc cycle was observed in the LVs and cardiac ECs (CECs) isolated from the NDPKB<sup>-/-</sup> mice. Furthermore, a bipolar O-GlcNAc regulation was identified in CMs. O-GlcNAc was decreased in NDPKB-depleted CMs, while conditioned medium from NDPKB-depleted ECs significantly increased O-GlcNAc levels, along with contractile and relaxation dysfunction of the hiPSC-CMs, which was attenuated by inhibiting endothelial HBP activation.</p><p><strong>Conclusions: </strong>Deficiency in NDPKB leads to endothelial activation of the HBP and cardiac dysfunction. Our findings may highlight the crucial role of proper endothelial HBP in maintaining cardiovascular homeostasis.</p>","PeriodicalId":9374,"journal":{"name":"Cardiovascular Diabetology","volume":"24 1","pages":"84"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846329/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Diabetology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12933-025-02633-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Nucleoside diphosphate kinase B (NDPKB) deficiency in endothelial cells (ECs) promotes the activation of the hexosamine biosynthesis pathway (HBP), leading to vascular damage in the retina. The aim of this study was to investigate the consequences of NDPKB deficiency in the mouse heart.

Methods: NDPKB deficient mice were used in the study. Echocardiography was employed to assess cardiac function in vivo. Characterization of contractility in hiPSC-derived cardiomyocytes (hiPSC-CMs) was measured with the IonOptix contractility system. Immunoblotting and immunofluorescence were carried out to analyze the expression and localization of proteins in cultured cells and left ventricles (LVs).

Results: NDPKB deficient mice displayed impaired glucose tolerance and increased heart weight compared to controls. Echocardiographic analysis revealed an increase in the diastolic diameter of the left ventricular posterior wall (LVPW), a decrease in the early diastolic mitral valve E and E' wave, and in the ratios of E/A and E'/A' in NDPKB deficient hearts, suggesting cardiac hypertrophy and diastolic dysfunction. In line with cardiac dysfunction, the phosphorylation of myocardial phospholamban (PLN) and the expression of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) in the NDPKB deficient LVs were significantly reduced. Moreover, the accumulation of collagen, fibronectin as well as the upregulation of transforming growth factor β (TGF-β), were detected in NDPKB deficient LVs. In addition, activation of the HBP and its downstream O-GlcNAc cycle was observed in the LVs and cardiac ECs (CECs) isolated from the NDPKB-/- mice. Furthermore, a bipolar O-GlcNAc regulation was identified in CMs. O-GlcNAc was decreased in NDPKB-depleted CMs, while conditioned medium from NDPKB-depleted ECs significantly increased O-GlcNAc levels, along with contractile and relaxation dysfunction of the hiPSC-CMs, which was attenuated by inhibiting endothelial HBP activation.

Conclusions: Deficiency in NDPKB leads to endothelial activation of the HBP and cardiac dysfunction. Our findings may highlight the crucial role of proper endothelial HBP in maintaining cardiovascular homeostasis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Diabetology
Cardiovascular Diabetology 医学-内分泌学与代谢
CiteScore
12.30
自引率
15.10%
发文量
240
审稿时长
1 months
期刊介绍: Cardiovascular Diabetology is a journal that welcomes manuscripts exploring various aspects of the relationship between diabetes, cardiovascular health, and the metabolic syndrome. We invite submissions related to clinical studies, genetic investigations, experimental research, pharmacological studies, epidemiological analyses, and molecular biology research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信