{"title":"Multi-omics analysis of the correlation between surface microbiome and metabolome in Saccharina latissima (Laminariales, Phaeophyceae).","authors":"Emilie Adouane, Cédric Hubas, Catherine Leblanc, Raphaël Lami, Soizic Prado","doi":"10.1093/femsec/fiae160","DOIUrl":null,"url":null,"abstract":"<p><p>The microbiome of Saccharina latissima, an important brown macroalgal species in Europe, significantly influences its health, fitness, and pathogen resistance. Yet, comprehensive studies on the diversity and function of microbial communities (bacteria, eukaryotes, and fungi) associated with this species are lacking. Using metabarcoding, we investigated the epimicrobiota of S. latissima and correlated microbial diversity with metabolomic patterns (liquid chromatography coupled to tandem mass spectrometry). Specific epibacterial and eukaryotic communities inhabit the S. latissima surface, alongside a core microbiota, while fungal communities show lower and more heterogeneous diversity. Metabolomic analysis revealed a large diversity of mass features, including putatively annotated fatty acids, amino derivatives, amino acids, and naphthofurans. Multiple-factor analysis linked microbial diversity with surface metabolome variations, driven mainly by fungi and bacteria. Two taxa groups were identified: one associated with bacterial consortia and the other with fungal consortia, each correlated with specific metabolites. This study demonstrated a core bacterial and eukaryotic microbiota associated with a core metabolome and highlighted interindividual variations. Annotating the surface metabolome using Natural Products databases suggested numerous metabolites potentially involved in interspecies chemical interactions. Our findings establish a link between microbial community structure and function, identifying two microbial consortia potentially involved in the chemical defense of S. latissima.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae160","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The microbiome of Saccharina latissima, an important brown macroalgal species in Europe, significantly influences its health, fitness, and pathogen resistance. Yet, comprehensive studies on the diversity and function of microbial communities (bacteria, eukaryotes, and fungi) associated with this species are lacking. Using metabarcoding, we investigated the epimicrobiota of S. latissima and correlated microbial diversity with metabolomic patterns (liquid chromatography coupled to tandem mass spectrometry). Specific epibacterial and eukaryotic communities inhabit the S. latissima surface, alongside a core microbiota, while fungal communities show lower and more heterogeneous diversity. Metabolomic analysis revealed a large diversity of mass features, including putatively annotated fatty acids, amino derivatives, amino acids, and naphthofurans. Multiple-factor analysis linked microbial diversity with surface metabolome variations, driven mainly by fungi and bacteria. Two taxa groups were identified: one associated with bacterial consortia and the other with fungal consortia, each correlated with specific metabolites. This study demonstrated a core bacterial and eukaryotic microbiota associated with a core metabolome and highlighted interindividual variations. Annotating the surface metabolome using Natural Products databases suggested numerous metabolites potentially involved in interspecies chemical interactions. Our findings establish a link between microbial community structure and function, identifying two microbial consortia potentially involved in the chemical defense of S. latissima.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms