Intranasal recombinant protein subunit vaccine targeting TLR3 induces respiratory tract IgA and CD8 T cell responses and protects against respiratory virus infection.
Katharina Wørzner, Signe Tandrup Schmidt, Julie Zimmermann, Ahmad Tami, Charlotta Polacek, Carlota Fernandez-Antunez, Katrine Top Hartmann, Rune Fledelius Jensen, Julia Sid Hansen, Kristin Illigen, Louise Krag Isling, Gitte Erbs, Gregers Jungersen, Ida Rosenkrands, Anna Offersgaard, Judith Gottwein, Kenn Holmbeck, Henrik Elvang Jensen, Santseharay Ramirez, Frank Follmann, Jens Bukh, Gabriel Kristian Pedersen
{"title":"Intranasal recombinant protein subunit vaccine targeting TLR3 induces respiratory tract IgA and CD8 T cell responses and protects against respiratory virus infection.","authors":"Katharina Wørzner, Signe Tandrup Schmidt, Julie Zimmermann, Ahmad Tami, Charlotta Polacek, Carlota Fernandez-Antunez, Katrine Top Hartmann, Rune Fledelius Jensen, Julia Sid Hansen, Kristin Illigen, Louise Krag Isling, Gitte Erbs, Gregers Jungersen, Ida Rosenkrands, Anna Offersgaard, Judith Gottwein, Kenn Holmbeck, Henrik Elvang Jensen, Santseharay Ramirez, Frank Follmann, Jens Bukh, Gabriel Kristian Pedersen","doi":"10.1016/j.ebiom.2025.105615","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intranasal vaccines against respiratory viruses are desired due to ease of administration and potential to protect against virus infection of the upper respiratory tract.</p><p><strong>Methods: </strong>We tested a cationic liposomal adjuvant delivering the TLR3 agonist Poly (I:C) (CAF®09b) for intranasal administration, by formulating this with SARS-CoV-2 spike trimeric protein and assessing airway mucosal immune responses in mice. The vaccine was further evaluated in SARS-CoV-2 virus challenge models, using mice expressing the human ACE2 receptor and Syrian hamsters.</p><p><strong>Findings: </strong>The intranasal vaccine elicited both serum neutralising antibody responses and IgA responses in the upper respiratory tract. Uniquely, it also elicited high-magnitude CD4 and CD8 T cell responses in the lung parenchyma and nasal-associated lymphoid tissue. In contrast, parenteral administration of the same vaccine, or the mRNA-1273 (Spikevax®) vaccine, led to systemic antibody responses and vaccine-induced CD4 T cells were mainly found in circulation. The intranasal vaccine protected against homologous SARS-CoV-2 (Wuhan-Hu-1) challenge in K18-hACE2 mice, preventing weight loss and virus infection in the upper and lower airways. In Syrian hamsters, the vaccine prevented weight loss and significantly reduced virus load after challenge with the homologous strain and Omicron BA.5.</p><p><strong>Interpretation: </strong>This study demonstrates that intranasal subunit vaccines containing TLR3-stimulating cationic liposomes effectively induce airway IgA and T cell responses, which could be utilised in future viral pandemics.</p><p><strong>Funding: </strong>This work was primarily supported by the European Union Horizon 2020 research and innovation program under grant agreement no. 101003653.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"113 ","pages":"105615"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2025.105615","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Intranasal vaccines against respiratory viruses are desired due to ease of administration and potential to protect against virus infection of the upper respiratory tract.
Methods: We tested a cationic liposomal adjuvant delivering the TLR3 agonist Poly (I:C) (CAF®09b) for intranasal administration, by formulating this with SARS-CoV-2 spike trimeric protein and assessing airway mucosal immune responses in mice. The vaccine was further evaluated in SARS-CoV-2 virus challenge models, using mice expressing the human ACE2 receptor and Syrian hamsters.
Findings: The intranasal vaccine elicited both serum neutralising antibody responses and IgA responses in the upper respiratory tract. Uniquely, it also elicited high-magnitude CD4 and CD8 T cell responses in the lung parenchyma and nasal-associated lymphoid tissue. In contrast, parenteral administration of the same vaccine, or the mRNA-1273 (Spikevax®) vaccine, led to systemic antibody responses and vaccine-induced CD4 T cells were mainly found in circulation. The intranasal vaccine protected against homologous SARS-CoV-2 (Wuhan-Hu-1) challenge in K18-hACE2 mice, preventing weight loss and virus infection in the upper and lower airways. In Syrian hamsters, the vaccine prevented weight loss and significantly reduced virus load after challenge with the homologous strain and Omicron BA.5.
Interpretation: This study demonstrates that intranasal subunit vaccines containing TLR3-stimulating cationic liposomes effectively induce airway IgA and T cell responses, which could be utilised in future viral pandemics.
Funding: This work was primarily supported by the European Union Horizon 2020 research and innovation program under grant agreement no. 101003653.
EBioMedicineBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍:
eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.