Actinomycetota isolated from the sponge Hymeniacidon perlevis as a source of novel compounds with pharmacological applications: diversity, bioactivity screening, and metabolomic analysis.
IF 3.2 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ana C Fonseca, Inês Ribeiro, Mariana Girão, Ana Regueiras, Ralph Urbatzka, Pedro Leão, Maria F Carvalho
{"title":"Actinomycetota isolated from the sponge Hymeniacidon perlevis as a source of novel compounds with pharmacological applications: diversity, bioactivity screening, and metabolomic analysis.","authors":"Ana C Fonseca, Inês Ribeiro, Mariana Girão, Ana Regueiras, Ralph Urbatzka, Pedro Leão, Maria F Carvalho","doi":"10.1093/jambio/lxaf044","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To combat health conditions, such as multi-resistant bacterial infections, cancer, and metabolic diseases, new drugs need to be urgently found and, in this respect, marine Actinomycetota have a high potential to produce secondary metabolites with pharmacological importance. We aimed to study the cultivable Actinomycetota community associated with a marine sponge from the Portuguese coast, Hymeniacidon perlevis, and investigate the potential of the retrieved isolates to produce compounds with antimicrobial, anticancer and anti-obesity properties.</p><p><strong>Methods and results: </strong>The analysis of the 16S rRNA gene revealed 79 Actinomycetota isolates affiliated with 12 genera-Brachybacterium, Dietzia, Glutamicibacter, Gordonia, Micrococcus, Micromonospora, Nocardia, Nocardiopsis, Paenoartrhobacter, Rhodococcus, Streptomyces, and Tsukamurella, most of which affiliated with the genus Streptomyces. The screening of antimicrobial activity revealed 13 strains, all belonging to the Streptomyces genus, capable of inhibiting the growth of Candida albicans, Bacillus subtilis, or Staphylococcus aureus. Forty-three extracts exhibited cytotoxic activity against at least one tested cell line (HepG2, HCT-116, and hCMEC-D3). Three extracts that were active against the two cancer cell lines tested, did not reduce the viability of the non-cancer endothelial cell line, hCMEC-D3. One Gordonia strain exhibited anti-obesity activity, revealed by its ability to reduce the neutral lipids in zebrafish larvae. Mass spectrometry-based dereplication analysis of active extracts identified several compounds associated with known Actinomycetota natural products. Nonetheless, five clusters contained metabolites that did not match any annotated natural products, suggesting they may represent new bioactive molecules.</p><p><strong>Conclusions: </strong>This work contributed to increase the knowledge on the diversity and bioactive potential of Actinomycetota associated with H. perlevis.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxaf044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: To combat health conditions, such as multi-resistant bacterial infections, cancer, and metabolic diseases, new drugs need to be urgently found and, in this respect, marine Actinomycetota have a high potential to produce secondary metabolites with pharmacological importance. We aimed to study the cultivable Actinomycetota community associated with a marine sponge from the Portuguese coast, Hymeniacidon perlevis, and investigate the potential of the retrieved isolates to produce compounds with antimicrobial, anticancer and anti-obesity properties.
Methods and results: The analysis of the 16S rRNA gene revealed 79 Actinomycetota isolates affiliated with 12 genera-Brachybacterium, Dietzia, Glutamicibacter, Gordonia, Micrococcus, Micromonospora, Nocardia, Nocardiopsis, Paenoartrhobacter, Rhodococcus, Streptomyces, and Tsukamurella, most of which affiliated with the genus Streptomyces. The screening of antimicrobial activity revealed 13 strains, all belonging to the Streptomyces genus, capable of inhibiting the growth of Candida albicans, Bacillus subtilis, or Staphylococcus aureus. Forty-three extracts exhibited cytotoxic activity against at least one tested cell line (HepG2, HCT-116, and hCMEC-D3). Three extracts that were active against the two cancer cell lines tested, did not reduce the viability of the non-cancer endothelial cell line, hCMEC-D3. One Gordonia strain exhibited anti-obesity activity, revealed by its ability to reduce the neutral lipids in zebrafish larvae. Mass spectrometry-based dereplication analysis of active extracts identified several compounds associated with known Actinomycetota natural products. Nonetheless, five clusters contained metabolites that did not match any annotated natural products, suggesting they may represent new bioactive molecules.
Conclusions: This work contributed to increase the knowledge on the diversity and bioactive potential of Actinomycetota associated with H. perlevis.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.