Jason A. Greenfield , Rafael Scherer , Diego Alba , Sofia De Arrigunaga , Osmel Alvarez , Sotiria Palioura , Afshan Nanji , Ghada Al Bayyat , Douglas Rodrigues da Costa , William Herskowitz , Michael Antonietti , Alessandro Jammal , Hasenin Al-Khersan , Winfred Wu , Mohamed Abou Shousha , Robert O'Brien , Anat Galor , Felipe A. Medeiros , Carol L. Karp
{"title":"Detection of Ocular Surface Squamous Neoplasia Using Artificial Intelligence With Anterior Segment Optical Coherence Tomography","authors":"Jason A. Greenfield , Rafael Scherer , Diego Alba , Sofia De Arrigunaga , Osmel Alvarez , Sotiria Palioura , Afshan Nanji , Ghada Al Bayyat , Douglas Rodrigues da Costa , William Herskowitz , Michael Antonietti , Alessandro Jammal , Hasenin Al-Khersan , Winfred Wu , Mohamed Abou Shousha , Robert O'Brien , Anat Galor , Felipe A. Medeiros , Carol L. Karp","doi":"10.1016/j.ajo.2025.02.019","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To develop and validate a deep learning (DL) model to differentiate ocular surface squamous neoplasia (OSSN) from pterygium and pinguecula using high-resolution anterior segment optical coherence tomography (AS-OCT).</div></div><div><h3>Design</h3><div>Retrospective Diagnostic Accuracy Study.</div></div><div><h3>Methods</h3><div><em>Setting</em>: Single-center.</div><div><em>Study Population</em>: All eyes with a clinical or biopsy-proven diagnosis of OSSN, pterygium, or pinguecula that received AS-OCT imaging.</div><div><em>Procedures</em>: Imaging data was extracted from Optovue AS-OCT (Fremont, CA) and patients’ clinical or biopsy-proven diagnoses were collected from electronic medical records. A DL classification model was developed using two methodologies: (1) a masked autoencoder was trained with unlabeled data from 105,859 AS-OCT images of 5746 eyes and (2) a Vision Transformer supervised model coupled to the autoencoder used labeled data for fine-tuning a binary classifier (OSSN vs non-OSSN lesions). A sample of 2022 AS-OCT images from 523 eyes (427 patients) were classified by expert graders into “OSSN or suspicious for OSSN” and “pterygium or pinguecula.” The algorithm's diagnostic performance was evaluated in a separate test sample using 566 scans (62 eyes, 48 patients) with biopsy-proven OSSN and compared with expert clinicians who were masked to the diagnosis. Analysis was conducted at the scan-level for both the DL model and expert clinicians, who were not provided with clinical images or supporting clinical data.</div></div><div><h3>Main Outcome</h3><div>Diagnostic performance of expert clinicians and the DL model in identifying OSSN on AS-OCT scans.</div></div><div><h3>Results</h3><div>The DL model had an accuracy of 90.3% (95% confidence intervals [CI]: 87.5%-92.6%), with sensitivity of 86.4% (95% CI: 81.4%-90.4%) and specificity of 93.2% (95% CI: 89.9%-95.7%) compared to the biopsy-proven diagnosis. Expert graders had a lower sensitivity 69.8% (95% CI: 63.6%-75.5%) and slightly higher specificity 98.5% (95% CI: 96.4%-99.5%) than the DL model. The area under the receiver operating characteristic curve for the DL model was 0.945 (95% CI: 0.918-0.972) and significantly greater than expert graders (area under the receiver operating characteristic curve = 0.688, <em>P</em> < .001).</div></div><div><h3>Conclusions</h3><div>A DL model applied to AS-OCT scans demonstrated high accuracy, sensitivity, and specificity in differentiating OSSN from pterygium and pinguecula. Interestingly, the model had comparable diagnostic performance to expert clinicians in this study and shows promise for enhancing clinical decision-making. Further research is warranted to explore the integration of this artificial intelligence-driven approach in routine screening and diagnostic protocols for OSSN.</div></div>","PeriodicalId":7568,"journal":{"name":"American Journal of Ophthalmology","volume":"273 ","pages":"Pages 182-191"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0002939425000789","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
To develop and validate a deep learning (DL) model to differentiate ocular surface squamous neoplasia (OSSN) from pterygium and pinguecula using high-resolution anterior segment optical coherence tomography (AS-OCT).
Design
Retrospective Diagnostic Accuracy Study.
Methods
Setting: Single-center.
Study Population: All eyes with a clinical or biopsy-proven diagnosis of OSSN, pterygium, or pinguecula that received AS-OCT imaging.
Procedures: Imaging data was extracted from Optovue AS-OCT (Fremont, CA) and patients’ clinical or biopsy-proven diagnoses were collected from electronic medical records. A DL classification model was developed using two methodologies: (1) a masked autoencoder was trained with unlabeled data from 105,859 AS-OCT images of 5746 eyes and (2) a Vision Transformer supervised model coupled to the autoencoder used labeled data for fine-tuning a binary classifier (OSSN vs non-OSSN lesions). A sample of 2022 AS-OCT images from 523 eyes (427 patients) were classified by expert graders into “OSSN or suspicious for OSSN” and “pterygium or pinguecula.” The algorithm's diagnostic performance was evaluated in a separate test sample using 566 scans (62 eyes, 48 patients) with biopsy-proven OSSN and compared with expert clinicians who were masked to the diagnosis. Analysis was conducted at the scan-level for both the DL model and expert clinicians, who were not provided with clinical images or supporting clinical data.
Main Outcome
Diagnostic performance of expert clinicians and the DL model in identifying OSSN on AS-OCT scans.
Results
The DL model had an accuracy of 90.3% (95% confidence intervals [CI]: 87.5%-92.6%), with sensitivity of 86.4% (95% CI: 81.4%-90.4%) and specificity of 93.2% (95% CI: 89.9%-95.7%) compared to the biopsy-proven diagnosis. Expert graders had a lower sensitivity 69.8% (95% CI: 63.6%-75.5%) and slightly higher specificity 98.5% (95% CI: 96.4%-99.5%) than the DL model. The area under the receiver operating characteristic curve for the DL model was 0.945 (95% CI: 0.918-0.972) and significantly greater than expert graders (area under the receiver operating characteristic curve = 0.688, P < .001).
Conclusions
A DL model applied to AS-OCT scans demonstrated high accuracy, sensitivity, and specificity in differentiating OSSN from pterygium and pinguecula. Interestingly, the model had comparable diagnostic performance to expert clinicians in this study and shows promise for enhancing clinical decision-making. Further research is warranted to explore the integration of this artificial intelligence-driven approach in routine screening and diagnostic protocols for OSSN.
期刊介绍:
The American Journal of Ophthalmology is a peer-reviewed, scientific publication that welcomes the submission of original, previously unpublished manuscripts directed to ophthalmologists and visual science specialists describing clinical investigations, clinical observations, and clinically relevant laboratory investigations. Published monthly since 1884, the full text of the American Journal of Ophthalmology and supplementary material are also presented online at www.AJO.com and on ScienceDirect.
The American Journal of Ophthalmology publishes Full-Length Articles, Perspectives, Editorials, Correspondences, Books Reports and Announcements. Brief Reports and Case Reports are no longer published. We recommend submitting Brief Reports and Case Reports to our companion publication, the American Journal of Ophthalmology Case Reports.
Manuscripts are accepted with the understanding that they have not been and will not be published elsewhere substantially in any format, and that there are no ethical problems with the content or data collection. Authors may be requested to produce the data upon which the manuscript is based and to answer expeditiously any questions about the manuscript or its authors.