Wenchuan Zhang, Dongxue Zhu, Hong Jiang, Limei Wang
{"title":"Identification of ferroptosis-related key genes in tuberculosis by bioinformatics methods.","authors":"Wenchuan Zhang, Dongxue Zhu, Hong Jiang, Limei Wang","doi":"10.1186/s13568-025-01839-z","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberculosis, induced by Mycobacterium tuberculosis (Mtb), continues to pose a significant global public health challenge. Ferroptosis has emerged as a pivotal factor in tuberculosis pathogenesis, however, the mechanism has not yet been fully clarified. Therefore, the aim of this study was to hypothesize and validate potential ferroptosis-related genes in Mtb infection through bioinformatics analysis, thereby offering insights for further investigation. The mRNA microarray expression profile datasets were sourced from the Gene Expression Omnibus. The differentially expressed genes (DEGs) were derived using GEO2R. Subsequently, the shared DEGs between the GSE174566 and GSE227851 datasets were intersected with the genes in the ferroptosis database. The ferroptosis-associated shared DEGs (Ferr-sDEGs) were validated in the GSE20050 dataset. They were subjected to PPI, Cytoscape and Friends analysis, the infiltration correlation of immune cells and qRT-PCR. A total of 11 Ferr-sDEGs were identified, and 9 genes were validated. These analyses revealed that the key Ferr-sDEGs contributed to ferroptosis during Mtb infection and these key Ferr-sDEGs were relatively independent, implying that ferroptosis may be triggered by various mechanisms. Concurrently, the infiltration and correlation analysis demonstrated that multiple types of immune cells could be activated by the key Ferr-sDEGs. Ultimately, qRT-PCR validated that the expression levels of key Ferr-sDEGs. In conclusion, ferroptosis serves a pivotal function in the pathogenesis of tuberculosis. IL1B, PTGS2, TNFAIP3, HMOX1, SOCS1, CD82, and NUPR1 may be vital genes associated with the ferroptosis induced by Mtb infection.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"15 1","pages":"31"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-025-01839-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberculosis, induced by Mycobacterium tuberculosis (Mtb), continues to pose a significant global public health challenge. Ferroptosis has emerged as a pivotal factor in tuberculosis pathogenesis, however, the mechanism has not yet been fully clarified. Therefore, the aim of this study was to hypothesize and validate potential ferroptosis-related genes in Mtb infection through bioinformatics analysis, thereby offering insights for further investigation. The mRNA microarray expression profile datasets were sourced from the Gene Expression Omnibus. The differentially expressed genes (DEGs) were derived using GEO2R. Subsequently, the shared DEGs between the GSE174566 and GSE227851 datasets were intersected with the genes in the ferroptosis database. The ferroptosis-associated shared DEGs (Ferr-sDEGs) were validated in the GSE20050 dataset. They were subjected to PPI, Cytoscape and Friends analysis, the infiltration correlation of immune cells and qRT-PCR. A total of 11 Ferr-sDEGs were identified, and 9 genes were validated. These analyses revealed that the key Ferr-sDEGs contributed to ferroptosis during Mtb infection and these key Ferr-sDEGs were relatively independent, implying that ferroptosis may be triggered by various mechanisms. Concurrently, the infiltration and correlation analysis demonstrated that multiple types of immune cells could be activated by the key Ferr-sDEGs. Ultimately, qRT-PCR validated that the expression levels of key Ferr-sDEGs. In conclusion, ferroptosis serves a pivotal function in the pathogenesis of tuberculosis. IL1B, PTGS2, TNFAIP3, HMOX1, SOCS1, CD82, and NUPR1 may be vital genes associated with the ferroptosis induced by Mtb infection.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.