Cheng-Wei Lu , Tzu-Yu Lin , Kun-Chieh Yeh , Pei‐Wen Hsieh , Kuan-Ming Chiu , Ming-Yi Lee , Su-Jane Wang
{"title":"Reduction in presynaptic glutamate release and the prevention of glutamate excitotoxicity by lupeol in rats","authors":"Cheng-Wei Lu , Tzu-Yu Lin , Kun-Chieh Yeh , Pei‐Wen Hsieh , Kuan-Ming Chiu , Ming-Yi Lee , Su-Jane Wang","doi":"10.1016/j.neuint.2025.105951","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to investigate whether lupeol, a pentacyclic triterpenoid, affects glutamate release in isolated nerve terminals (synaptosomes) from the rat cerebral cortex and whether lupeol affects the excitotoxicity induced by kainic acid (KA) in rats. In rat cerebrocortical synaptosomes, lupeol reduced glutamate release in a manner that could be blocked by extracellular Ca<sup>2+</sup>-free medium or P/Q-type Ca<sup>2+</sup> channel antagonism. The synaptosomal membrane potential was not affected by lupeol treatment. Docking data also revealed that lupeol formed a hydrogen bond with amino acid residues of the P/Q-type Ca<sup>2+</sup> channel. In the KA-induced acute excitotoxicity model, lupeol pretreatment ameliorated cortical neurodegeneration and downregulated the expression of glutamate release-related proteins vesicular glutamate transporter 1 (VGLUT1) and phospho-synapsin I, thereby reducing the glutamate levels in the cortices of rats. Our findings suggest that lupeol may exert a neuroprotective effect by reducing glutamate excitotoxicity through the inhibition of presynaptic glutamate release. These results indicate that lupeol could be a promising candidate for the treatment of glutamatergic excitotoxicity and related neurological diseases.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"185 ","pages":"Article 105951"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018625000245","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to investigate whether lupeol, a pentacyclic triterpenoid, affects glutamate release in isolated nerve terminals (synaptosomes) from the rat cerebral cortex and whether lupeol affects the excitotoxicity induced by kainic acid (KA) in rats. In rat cerebrocortical synaptosomes, lupeol reduced glutamate release in a manner that could be blocked by extracellular Ca2+-free medium or P/Q-type Ca2+ channel antagonism. The synaptosomal membrane potential was not affected by lupeol treatment. Docking data also revealed that lupeol formed a hydrogen bond with amino acid residues of the P/Q-type Ca2+ channel. In the KA-induced acute excitotoxicity model, lupeol pretreatment ameliorated cortical neurodegeneration and downregulated the expression of glutamate release-related proteins vesicular glutamate transporter 1 (VGLUT1) and phospho-synapsin I, thereby reducing the glutamate levels in the cortices of rats. Our findings suggest that lupeol may exert a neuroprotective effect by reducing glutamate excitotoxicity through the inhibition of presynaptic glutamate release. These results indicate that lupeol could be a promising candidate for the treatment of glutamatergic excitotoxicity and related neurological diseases.
期刊介绍:
Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.