Deep learning models for differentiating three sinonasal malignancies using multi-sequence MRI.

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Luxi Wang, Naier Lin, Wei Chen, Hanyu Xiao, Yiyin Zhang, Yan Sha
{"title":"Deep learning models for differentiating three sinonasal malignancies using multi-sequence MRI.","authors":"Luxi Wang, Naier Lin, Wei Chen, Hanyu Xiao, Yiyin Zhang, Yan Sha","doi":"10.1186/s12880-024-01517-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop MRI-based deep learning (DL) models for distinguishing sinonasal squamous cell carcinoma (SCC), adenoid cystic carcinoma (ACC) and olfactory neuroblastoma (ONB) and to evaluate whether the DL models could improve the diagnostic performance of Senior radiologist (SR) and Junior radiologist (JR).</p><p><strong>Methods: </strong>This retrospective analysis consisted of 465 patients (229 sinonasal SCCs, 128 ACCs and 108 ONBs). The training and validation cohorts included 325 and 47 patients and the independent external testing cohort consisted of 93 patients. MRI images included T2-weighted image (T2WI), contrast-enhanced T1-weighted image (CE-T1WI) and apparent diffusion coefficient (ADC). We analyzed the conventional MRI features to choose the independent predictors and built the conventional MRI model. Then we compared the macro- and micro- area under the curves (AUCs) of different sequences and different DL networks to formulate the best DL model [artificial intelligence (AI) model scheme]. With AI assistance, we observed the diagnostic performances between SR and JR. The diagnostic efficacies of SR and JR were assessed by accuracy, Recall, precision, F1-Score and confusion matrices.</p><p><strong>Results: </strong>The independent predictors of conventional MRI included intensity on T2WI and intracranial invasion of sinonasal malignancies. With ExtraTrees (ET) classier, the conventional MRI model owned AUC of 78.8%. For DL models, ResNet101 network showed better performance than ResNet50 and DensNet121, especially for the mean fusion sequence (macro-AUC = 0.892, micro-AUC = 0.875, Accuracy = 0.810), and also good for the ADC sequence (macro-AUC = 0.872, micro-AUC = 0.874, Accuracy = 0.814). Grad-CAM showed that DL models focused on solid component of lesions. With the best AI scheme (ResNet101-mean sequence-based DL model) assistance, the diagnosis performances of SR (accuracy = 0.957, average Recall = 0.962, precision = 0.955, F1-Score = 0.957) and JR (accuracy = 0.925, average Recall = 0.917, precision = 0.931, F1-Score = 0.923) were significantly improved.</p><p><strong>Conclusion: </strong>The ResNet101 network with mean sequence based DL model could effectively differential between sinonasal SCC, ACC and ONB and improved the diagnostic performances of both senior and junior radiologists.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"56"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846208/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01517-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To develop MRI-based deep learning (DL) models for distinguishing sinonasal squamous cell carcinoma (SCC), adenoid cystic carcinoma (ACC) and olfactory neuroblastoma (ONB) and to evaluate whether the DL models could improve the diagnostic performance of Senior radiologist (SR) and Junior radiologist (JR).

Methods: This retrospective analysis consisted of 465 patients (229 sinonasal SCCs, 128 ACCs and 108 ONBs). The training and validation cohorts included 325 and 47 patients and the independent external testing cohort consisted of 93 patients. MRI images included T2-weighted image (T2WI), contrast-enhanced T1-weighted image (CE-T1WI) and apparent diffusion coefficient (ADC). We analyzed the conventional MRI features to choose the independent predictors and built the conventional MRI model. Then we compared the macro- and micro- area under the curves (AUCs) of different sequences and different DL networks to formulate the best DL model [artificial intelligence (AI) model scheme]. With AI assistance, we observed the diagnostic performances between SR and JR. The diagnostic efficacies of SR and JR were assessed by accuracy, Recall, precision, F1-Score and confusion matrices.

Results: The independent predictors of conventional MRI included intensity on T2WI and intracranial invasion of sinonasal malignancies. With ExtraTrees (ET) classier, the conventional MRI model owned AUC of 78.8%. For DL models, ResNet101 network showed better performance than ResNet50 and DensNet121, especially for the mean fusion sequence (macro-AUC = 0.892, micro-AUC = 0.875, Accuracy = 0.810), and also good for the ADC sequence (macro-AUC = 0.872, micro-AUC = 0.874, Accuracy = 0.814). Grad-CAM showed that DL models focused on solid component of lesions. With the best AI scheme (ResNet101-mean sequence-based DL model) assistance, the diagnosis performances of SR (accuracy = 0.957, average Recall = 0.962, precision = 0.955, F1-Score = 0.957) and JR (accuracy = 0.925, average Recall = 0.917, precision = 0.931, F1-Score = 0.923) were significantly improved.

Conclusion: The ResNet101 network with mean sequence based DL model could effectively differential between sinonasal SCC, ACC and ONB and improved the diagnostic performances of both senior and junior radiologists.

利用多序列磁共振成像区分三种鼻窦恶性肿瘤的深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信