Enhancing methane production in anaerobic digestion via improved electron transfer with dual-reaction-centers catalyst

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Congfeng Xu , Wenrui Cao , Fangxing Guo , Chun Hu , Lai Lyu
{"title":"Enhancing methane production in anaerobic digestion via improved electron transfer with dual-reaction-centers catalyst","authors":"Congfeng Xu ,&nbsp;Wenrui Cao ,&nbsp;Fangxing Guo ,&nbsp;Chun Hu ,&nbsp;Lai Lyu","doi":"10.1016/j.envres.2025.121190","DOIUrl":null,"url":null,"abstract":"<div><div>The recovery of methane from waste-activated sludge and rice straw often encounters challenges due to inefficient electron transfer between microorganisms. To break through this bottleneck, a novel and effective strategy is urgently needed. Here, we propose adding dual reaction centers (DRCs) catalyst with electron-rich and electron-poor microregions into the anaerobic digestion (AD) system. Pigeon manure was transformed into a novel DRCs catalyst, Fe-PMC, through pyrolysis and doping. Our findings indicate that the micro-electric field on the surface of Fe-PMC effectively aggregated humic acid-like substances and increased sludge conductivity. Compared to the control group (0 mg/L), adding trace amounts of Fe-PMC (40 mg/L) significantly increased methane production by 27.45%. High-throughput sequencing analyses revealed that Fe-PMC enhanced the relative abundance of functional microorganisms, such as <em>Geobacter</em> (23.62%) and <em>Methanobacterium</em> (35.53%), thereby promoting methanogenic co-metabolism. Furthermore, functional genes associated with carbon dioxide reduction to methane and direct interspecific electron transfer were upregulated by 3.41%–297.66%. This study provides a valuable reference for recovering renewable energy from waste using DRCs catalysts.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"272 ","pages":"Article 121190"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125004414","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The recovery of methane from waste-activated sludge and rice straw often encounters challenges due to inefficient electron transfer between microorganisms. To break through this bottleneck, a novel and effective strategy is urgently needed. Here, we propose adding dual reaction centers (DRCs) catalyst with electron-rich and electron-poor microregions into the anaerobic digestion (AD) system. Pigeon manure was transformed into a novel DRCs catalyst, Fe-PMC, through pyrolysis and doping. Our findings indicate that the micro-electric field on the surface of Fe-PMC effectively aggregated humic acid-like substances and increased sludge conductivity. Compared to the control group (0 mg/L), adding trace amounts of Fe-PMC (40 mg/L) significantly increased methane production by 27.45%. High-throughput sequencing analyses revealed that Fe-PMC enhanced the relative abundance of functional microorganisms, such as Geobacter (23.62%) and Methanobacterium (35.53%), thereby promoting methanogenic co-metabolism. Furthermore, functional genes associated with carbon dioxide reduction to methane and direct interspecific electron transfer were upregulated by 3.41%–297.66%. This study provides a valuable reference for recovering renewable energy from waste using DRCs catalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信