Artificial neural network modeling for adsorption of Congo red and methylene blue dye removal using pineapple waste-mediated magnetic nanoparticles

IF 3.674 4区 工程技术 Q1 Engineering
V. C. Deivayanai, S. Karishma, P. Thamarai, A. Saravanan, P. R. Yaashikaa
{"title":"Artificial neural network modeling for adsorption of Congo red and methylene blue dye removal using pineapple waste-mediated magnetic nanoparticles","authors":"V. C. Deivayanai,&nbsp;S. Karishma,&nbsp;P. Thamarai,&nbsp;A. Saravanan,&nbsp;P. R. Yaashikaa","doi":"10.1007/s13204-025-03084-z","DOIUrl":null,"url":null,"abstract":"<div><p>The effective removal of synthetic dyes from wastewater remains a significant environmental challenge. This study investigates the potential of carbonated pineapple peel waste, integrated with magnetic nanoparticles (PMNPs), for the adsorption-based removal of Congo red (CR) and methylene blue (MB) dyes. Various characterization techniques, including SEM, FTIR, and EDS, were used to analyze PMNPs before and after adsorption, while XRD, BET, VSM, and TGA were applied to assess the properties of pure PMNPs and their suitability for adsorption. The PMNPs exhibited a needle-like morphology and a high surface area of 6.836 m<sup>2</sup>/g, enhancing their dye adsorption capacity. At concentrations of 1.5 and 1.25 g/L, PMNPs achieved removal efficiencies of 93.15% for CR and 95.99% for MB. Thermodynamic analysis revealed the adsorption process to be spontaneous and exothermic. Computational modeling demonstrated that the Langmuir isotherm best described the adsorption process (<i>R</i><sup>2</sup> = 0.9930 for MB and 0.9891 for CR), while pseudo-first-order kinetics indicated physical adsorption. Artificial neural network (ANN) models further validated the experimental results, showing high prediction accuracy (<i>R</i> = 0.9948 for MB and 0.9939 for CR). The PMNPs retained efficient performance after six reuse cycles, highlighting their reusability. This novelty of the research demonstrates the potential of PMNPs as a sustainable adsorbent and provides insights into optimizing adsorption processes through computational modeling.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"15 2","pages":""},"PeriodicalIF":3.6740,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-025-03084-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The effective removal of synthetic dyes from wastewater remains a significant environmental challenge. This study investigates the potential of carbonated pineapple peel waste, integrated with magnetic nanoparticles (PMNPs), for the adsorption-based removal of Congo red (CR) and methylene blue (MB) dyes. Various characterization techniques, including SEM, FTIR, and EDS, were used to analyze PMNPs before and after adsorption, while XRD, BET, VSM, and TGA were applied to assess the properties of pure PMNPs and their suitability for adsorption. The PMNPs exhibited a needle-like morphology and a high surface area of 6.836 m2/g, enhancing their dye adsorption capacity. At concentrations of 1.5 and 1.25 g/L, PMNPs achieved removal efficiencies of 93.15% for CR and 95.99% for MB. Thermodynamic analysis revealed the adsorption process to be spontaneous and exothermic. Computational modeling demonstrated that the Langmuir isotherm best described the adsorption process (R2 = 0.9930 for MB and 0.9891 for CR), while pseudo-first-order kinetics indicated physical adsorption. Artificial neural network (ANN) models further validated the experimental results, showing high prediction accuracy (R = 0.9948 for MB and 0.9939 for CR). The PMNPs retained efficient performance after six reuse cycles, highlighting their reusability. This novelty of the research demonstrates the potential of PMNPs as a sustainable adsorbent and provides insights into optimizing adsorption processes through computational modeling.

菠萝废弃物介导的磁性纳米颗粒吸附刚果红和亚甲基蓝染料的人工神经网络建模
有效去除废水中的合成染料仍然是一个重大的环境挑战。本研究探讨了碳化菠萝皮废弃物与磁性纳米颗粒(PMNPs)结合的吸附去除刚果红(CR)和亚甲基蓝(MB)染料的潜力。采用SEM、FTIR、EDS等多种表征技术对吸附前后的PMNPs进行了分析,采用XRD、BET、VSM、TGA等方法对纯PMNPs的性能及其吸附适用性进行了评价。PMNPs呈针状形态,比表面积高达6.836 m2/g,增强了对染料的吸附能力。在浓度为1.5和1.25 g/L时,PMNPs对CR的去除率为93.15%,对MB的去除率为95.99%。热力学分析表明,PMNPs的吸附过程是自发的、放热的。计算模型表明,Langmuir等温线最能描述吸附过程(MB的R2 = 0.9930, CR的R2 = 0.9891),而准一级动力学表明物理吸附。人工神经网络(ANN)模型进一步验证了实验结果,显示出较高的预测精度(R = 0.9948 MB和0.9939 CR)。PMNPs在6个重复使用周期后保持了高效的性能,突出了其可重用性。这项新颖的研究证明了PMNPs作为一种可持续吸附剂的潜力,并通过计算建模为优化吸附过程提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Nanoscience
Applied Nanoscience Materials Science-Materials Science (miscellaneous)
CiteScore
7.10
自引率
0.00%
发文量
430
期刊介绍: Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信