Dual targeted lipid nanoparticles for enhanced DNA delivery and transfection of breast cancer cells

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Claudia Lotter , Megan Anna Stierli , Ramya Deepthi Puligilla, Jörg Huwyler
{"title":"Dual targeted lipid nanoparticles for enhanced DNA delivery and transfection of breast cancer cells","authors":"Claudia Lotter ,&nbsp;Megan Anna Stierli ,&nbsp;Ramya Deepthi Puligilla,&nbsp;Jörg Huwyler","doi":"10.1016/j.ejpb.2025.114674","DOIUrl":null,"url":null,"abstract":"<div><div>Lipid nanoparticles (LNPs) have gained much attention as non-viral gene delivery systems due to their large payload capacity, reduced immunogenicity, and cost-effective manufacturing. Surface modification of LNPs by covalent attachment of receptor ligands can improve their tissue specificity and reduce off-target effects. In the present work, DNA-LNPs were therefore designed to target breast cancer, particularly the invasive HER2-positive subtype. Targeting was mediated by trastuzumab (Herceptin®) a monoclonal antibody binding to the extracellular domain of the human epidermal growth factor receptor protein (HER2). To overcome intrinsic trastuzumab resistance for some patients with HER2 positive breast cancer, a dual-targeting strategy was employed by combining Herceptin with folate to enhance LNP uptake by cancer cells.</div><div>Dual-targeted LNPs encapsulating plasmid DNA, coding for a fluorescent reporter protein (tdTomato or EGFP), were prepared using folate-conjugated PEGylated lipids. Subsequently, thiolated Herceptin was conjugated to the surface of the LNPs. At an N/P ratio of 6, small and uniform targeted LNPs were obtained, with a slightly negative ζ-potential. Cellular uptake and transgene expression were characterized <em>in<!--> <!-->vitro</em> using three breast cancer cell lines (MCF7, MDA-mb453, SKBR3), which express varying level of the HER2 receptor. Cellular uptake correlated with HER2 expression levels and was significantly increased when Herceptin was combined with folate. In all tested breast cancer cell lines, dual-targeted LNPs led to an enhanced transgene expression compared to single-targeted LNPs. Furthermore, <em>in<!--> <!-->vivo</em> zebrafish xenograft studies confirmed superior targeting and transfection efficiency of Dual-LNPs under physiological conditions.</div><div>Our findings highlight the superior performance of dual-targeted LNPs to deliver a DNA expression plasmid to HER2 positive breast cancer cells, emphasizing their potential as an improved targeting and transfection strategy.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"209 ","pages":"Article 114674"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641125000505","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipid nanoparticles (LNPs) have gained much attention as non-viral gene delivery systems due to their large payload capacity, reduced immunogenicity, and cost-effective manufacturing. Surface modification of LNPs by covalent attachment of receptor ligands can improve their tissue specificity and reduce off-target effects. In the present work, DNA-LNPs were therefore designed to target breast cancer, particularly the invasive HER2-positive subtype. Targeting was mediated by trastuzumab (Herceptin®) a monoclonal antibody binding to the extracellular domain of the human epidermal growth factor receptor protein (HER2). To overcome intrinsic trastuzumab resistance for some patients with HER2 positive breast cancer, a dual-targeting strategy was employed by combining Herceptin with folate to enhance LNP uptake by cancer cells.
Dual-targeted LNPs encapsulating plasmid DNA, coding for a fluorescent reporter protein (tdTomato or EGFP), were prepared using folate-conjugated PEGylated lipids. Subsequently, thiolated Herceptin was conjugated to the surface of the LNPs. At an N/P ratio of 6, small and uniform targeted LNPs were obtained, with a slightly negative ζ-potential. Cellular uptake and transgene expression were characterized in vitro using three breast cancer cell lines (MCF7, MDA-mb453, SKBR3), which express varying level of the HER2 receptor. Cellular uptake correlated with HER2 expression levels and was significantly increased when Herceptin was combined with folate. In all tested breast cancer cell lines, dual-targeted LNPs led to an enhanced transgene expression compared to single-targeted LNPs. Furthermore, in vivo zebrafish xenograft studies confirmed superior targeting and transfection efficiency of Dual-LNPs under physiological conditions.
Our findings highlight the superior performance of dual-targeted LNPs to deliver a DNA expression plasmid to HER2 positive breast cancer cells, emphasizing their potential as an improved targeting and transfection strategy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
4.10%
发文量
211
审稿时长
36 days
期刊介绍: The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics. Topics covered include for example: Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids) Aspects of manufacturing process design Biomedical aspects of drug product design Strategies and formulations for controlled drug transport across biological barriers Physicochemical aspects of drug product development Novel excipients for drug product design Drug delivery and controlled release systems for systemic and local applications Nanomaterials for therapeutic and diagnostic purposes Advanced therapy medicinal products Medical devices supporting a distinct pharmacological effect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信