Neutrophils-mediated accelerated blood clearance phenomenon in beagles and rats based on the cross-injection of non-PEGylated and PEGylated nanoemulsions
Mengyang Liu , Jia Wang , Ge Chen , Lirong Wang , Xuling Wang , Bai Xiang , Yihui Deng , Chaoxing He , Lei Wang
{"title":"Neutrophils-mediated accelerated blood clearance phenomenon in beagles and rats based on the cross-injection of non-PEGylated and PEGylated nanoemulsions","authors":"Mengyang Liu , Jia Wang , Ge Chen , Lirong Wang , Xuling Wang , Bai Xiang , Yihui Deng , Chaoxing He , Lei Wang","doi":"10.1016/j.ijpx.2025.100318","DOIUrl":null,"url":null,"abstract":"<div><div>The initial injection of PEGylated nanoparticles can activate antibodies and the complement system, leading to the accelerated blood clearance (ABC) phenomenon, characterized by reduced circulation time and abnormal liver and spleen accumulation upon re-exposure. However, PEGylation is not essential for ABC induction, as non-PEGylated nanoparticles can also trigger the similar ABC phenomenon. In this study, we found non-PEGylated nanoemulsions (CE) could accelerate the blood clearance of subsequent injection of PEGylated nanoemulsions (PE) in beagles and rats, which was independent of antibodies and the complement system, but was associated with an increase in neutrophil numbers and phagocytic activity. We propose classifying this as a “general ABC phenomenon,” broadening clinical relevance and highlighting potential immune risks of ABC phenomenon. The intensity of the ABC phenomenon correlated with the initial CE phospholipid dose in both species. Notably, larger CE particles (∼ 300 nm) induced the ABC phenomenon in beagles, while smaller particles (∼ 80 nm) with higher immunogenicity were required in rats. This suggested that beagles are more susceptible to CE-induced ABC phenomenon. The higher neutrophil proportion in beagles likely contributed to species differences in ABC phenomenon. This is the first study to report neutrophil involvement in ABC induction by non-PEGylated nanoparticles, more importantly, underscoring potential immune risks in the cross-injection of non-PEGylated and PEGylated nanoparticles during the developments and clinical applications of nano-drug delivery systems.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"9 ","pages":"Article 100318"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156725000039","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The initial injection of PEGylated nanoparticles can activate antibodies and the complement system, leading to the accelerated blood clearance (ABC) phenomenon, characterized by reduced circulation time and abnormal liver and spleen accumulation upon re-exposure. However, PEGylation is not essential for ABC induction, as non-PEGylated nanoparticles can also trigger the similar ABC phenomenon. In this study, we found non-PEGylated nanoemulsions (CE) could accelerate the blood clearance of subsequent injection of PEGylated nanoemulsions (PE) in beagles and rats, which was independent of antibodies and the complement system, but was associated with an increase in neutrophil numbers and phagocytic activity. We propose classifying this as a “general ABC phenomenon,” broadening clinical relevance and highlighting potential immune risks of ABC phenomenon. The intensity of the ABC phenomenon correlated with the initial CE phospholipid dose in both species. Notably, larger CE particles (∼ 300 nm) induced the ABC phenomenon in beagles, while smaller particles (∼ 80 nm) with higher immunogenicity were required in rats. This suggested that beagles are more susceptible to CE-induced ABC phenomenon. The higher neutrophil proportion in beagles likely contributed to species differences in ABC phenomenon. This is the first study to report neutrophil involvement in ABC induction by non-PEGylated nanoparticles, more importantly, underscoring potential immune risks in the cross-injection of non-PEGylated and PEGylated nanoparticles during the developments and clinical applications of nano-drug delivery systems.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.