On generalized Sugeno’s class generator and parametrized intuitionistic fuzzy approach for enhancing low-light images

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Maheshkumar C.V. , David Raj M. , Saraswathi D.
{"title":"On generalized Sugeno’s class generator and parametrized intuitionistic fuzzy approach for enhancing low-light images","authors":"Maheshkumar C.V. ,&nbsp;David Raj M. ,&nbsp;Saraswathi D.","doi":"10.1016/j.asoc.2025.112865","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing low-light images poses a significant challenge in terms of pixel distortion, color degradation, detail loss, over enhancement and noise amplification, particularly in images that have both low light and normal light region. In recent years, researchers have increasingly turned their attention to intuitionistic fuzzy set based approaches for low light image enhancement due to their flexibility in the representation of a pixel. In this work, the generalized Sugeno’s class of generating function is proposed. Since the parameter value in the existing generating functions lies in an unbounded interval, it is difficult to find the best parameter value. By using the proposed generalized version, a few intuitionistic generating functions are analyzed where the parameter value lies in a bounded interval. A searching algorithm is also proposed to find the parameter value that maximizes the entropy of an image for any membership and generating function. Regardless of the number of decimals, the proposed approach finds the best parameter value iteratively. Then, in HSI color space, an enhancement model is designed utilizing the intuitionistic fuzzy image achieved using best parameter value and contrast-limited adaptive histogram equalization. The proposed method performs better compared to the state-of-the-art models. Also, seven image quality mathematical metrics — entropy, SSIM, correlation coefficient <span><math><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></math></span>, PSNR, AMBE, number of edge pixels <span><math><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></mrow></math></span> and the fitness function are implemented to compare the proposed and state-of-the-art models.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"172 ","pages":"Article 112865"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625001760","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing low-light images poses a significant challenge in terms of pixel distortion, color degradation, detail loss, over enhancement and noise amplification, particularly in images that have both low light and normal light region. In recent years, researchers have increasingly turned their attention to intuitionistic fuzzy set based approaches for low light image enhancement due to their flexibility in the representation of a pixel. In this work, the generalized Sugeno’s class of generating function is proposed. Since the parameter value in the existing generating functions lies in an unbounded interval, it is difficult to find the best parameter value. By using the proposed generalized version, a few intuitionistic generating functions are analyzed where the parameter value lies in a bounded interval. A searching algorithm is also proposed to find the parameter value that maximizes the entropy of an image for any membership and generating function. Regardless of the number of decimals, the proposed approach finds the best parameter value iteratively. Then, in HSI color space, an enhancement model is designed utilizing the intuitionistic fuzzy image achieved using best parameter value and contrast-limited adaptive histogram equalization. The proposed method performs better compared to the state-of-the-art models. Also, seven image quality mathematical metrics — entropy, SSIM, correlation coefficient (r), PSNR, AMBE, number of edge pixels (Ng) and the fitness function are implemented to compare the proposed and state-of-the-art models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信