{"title":"On generalized Sugeno’s class generator and parametrized intuitionistic fuzzy approach for enhancing low-light images","authors":"Maheshkumar C.V. , David Raj M. , Saraswathi D.","doi":"10.1016/j.asoc.2025.112865","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing low-light images poses a significant challenge in terms of pixel distortion, color degradation, detail loss, over enhancement and noise amplification, particularly in images that have both low light and normal light region. In recent years, researchers have increasingly turned their attention to intuitionistic fuzzy set based approaches for low light image enhancement due to their flexibility in the representation of a pixel. In this work, the generalized Sugeno’s class of generating function is proposed. Since the parameter value in the existing generating functions lies in an unbounded interval, it is difficult to find the best parameter value. By using the proposed generalized version, a few intuitionistic generating functions are analyzed where the parameter value lies in a bounded interval. A searching algorithm is also proposed to find the parameter value that maximizes the entropy of an image for any membership and generating function. Regardless of the number of decimals, the proposed approach finds the best parameter value iteratively. Then, in HSI color space, an enhancement model is designed utilizing the intuitionistic fuzzy image achieved using best parameter value and contrast-limited adaptive histogram equalization. The proposed method performs better compared to the state-of-the-art models. Also, seven image quality mathematical metrics — entropy, SSIM, correlation coefficient <span><math><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></math></span>, PSNR, AMBE, number of edge pixels <span><math><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></mrow></math></span> and the fitness function are implemented to compare the proposed and state-of-the-art models.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"172 ","pages":"Article 112865"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625001760","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing low-light images poses a significant challenge in terms of pixel distortion, color degradation, detail loss, over enhancement and noise amplification, particularly in images that have both low light and normal light region. In recent years, researchers have increasingly turned their attention to intuitionistic fuzzy set based approaches for low light image enhancement due to their flexibility in the representation of a pixel. In this work, the generalized Sugeno’s class of generating function is proposed. Since the parameter value in the existing generating functions lies in an unbounded interval, it is difficult to find the best parameter value. By using the proposed generalized version, a few intuitionistic generating functions are analyzed where the parameter value lies in a bounded interval. A searching algorithm is also proposed to find the parameter value that maximizes the entropy of an image for any membership and generating function. Regardless of the number of decimals, the proposed approach finds the best parameter value iteratively. Then, in HSI color space, an enhancement model is designed utilizing the intuitionistic fuzzy image achieved using best parameter value and contrast-limited adaptive histogram equalization. The proposed method performs better compared to the state-of-the-art models. Also, seven image quality mathematical metrics — entropy, SSIM, correlation coefficient , PSNR, AMBE, number of edge pixels and the fitness function are implemented to compare the proposed and state-of-the-art models.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.