CFD-DEM modelling of dense gas-solid reacting flow: Recent advances and challenges

IF 37 1区 工程技术 Q1 ENERGY & FUELS
Shuai Wang, Yansong Shen
{"title":"CFD-DEM modelling of dense gas-solid reacting flow: Recent advances and challenges","authors":"Shuai Wang,&nbsp;Yansong Shen","doi":"10.1016/j.pecs.2025.101221","DOIUrl":null,"url":null,"abstract":"<div><div>Dense gas-solid reacting flow involves multiphase flow, heat and mass transfer, and chemical reactions. The computational fluid dynamics-discrete element method (CFD-DEM) has emerged as a promising tool for investigating and optimizing dense gas-solid reacting systems at the particle scale. Despite the rapid advancement of CFD-DEM and its successful application to various chemical engineering processes, there is still a lack of a comprehensive review of the theory and applications of CFD-DEM modelling of dense gas-solid reacting flow. This article aims to bridge this gap by providing a systematic review of recent progress in the development of CFD-DEM models and their applications to dense gas-solid reacting systems. This article begins by providing a comprehensive review of sub-models used to describe flow dynamics and thermochemical conversion in dense gas-solid reacting systems. The numerical algorithms and implementations, ranging from flow to heat and mass transfer, as well as speed-up methods, are examined in detail. The focus then shifts to the recent advancements of CFD-DEM applications in chemical engineering processes related to dense gas-solid reacting systems. Specific areas of interest include the thermochemical conversion of biomass and coal, blast furnace ironmaking, chemical looping combustion, solid waste incineration, lime shaft kiln calcination, and more. Furthermore, the challenges associated with effectively and efficiently modelling dense gas-solid reacting flow, particularly about the multi-physics and multi-scale characteristics in both time and space, are thoroughly assessed. By addressing these challenges, this review is expected to foster further progress in the field and enhance our understanding and control of dense gas-solid reacting systems in various applications.</div></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"109 ","pages":"Article 101221"},"PeriodicalIF":37.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360128525000139","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Dense gas-solid reacting flow involves multiphase flow, heat and mass transfer, and chemical reactions. The computational fluid dynamics-discrete element method (CFD-DEM) has emerged as a promising tool for investigating and optimizing dense gas-solid reacting systems at the particle scale. Despite the rapid advancement of CFD-DEM and its successful application to various chemical engineering processes, there is still a lack of a comprehensive review of the theory and applications of CFD-DEM modelling of dense gas-solid reacting flow. This article aims to bridge this gap by providing a systematic review of recent progress in the development of CFD-DEM models and their applications to dense gas-solid reacting systems. This article begins by providing a comprehensive review of sub-models used to describe flow dynamics and thermochemical conversion in dense gas-solid reacting systems. The numerical algorithms and implementations, ranging from flow to heat and mass transfer, as well as speed-up methods, are examined in detail. The focus then shifts to the recent advancements of CFD-DEM applications in chemical engineering processes related to dense gas-solid reacting systems. Specific areas of interest include the thermochemical conversion of biomass and coal, blast furnace ironmaking, chemical looping combustion, solid waste incineration, lime shaft kiln calcination, and more. Furthermore, the challenges associated with effectively and efficiently modelling dense gas-solid reacting flow, particularly about the multi-physics and multi-scale characteristics in both time and space, are thoroughly assessed. By addressing these challenges, this review is expected to foster further progress in the field and enhance our understanding and control of dense gas-solid reacting systems in various applications.
致密气固反应流动的CFD-DEM建模:最新进展和挑战
密集气固反应流包括多相流、传热传质和化学反应。计算流体动力学离散元方法(CFD-DEM)已成为研究和优化颗粒尺度致密气固反应系统的一种很有前途的工具。尽管CFD-DEM快速发展并成功应用于各种化工过程,但目前仍缺乏对密集气固反应流动CFD-DEM建模的理论和应用的全面综述。本文旨在通过系统回顾CFD-DEM模型的发展及其在致密气固反应系统中的应用的最新进展来弥合这一差距。本文首先提供了用于描述密集气固反应系统中的流动动力学和热化学转化的子模型的全面审查。数值算法和实现,从流动到传热和传质,以及加速方法,进行了详细的检查。然后,重点转移到与致密气固反应系统相关的化学工程过程中CFD-DEM应用的最新进展。具体的兴趣领域包括生物质和煤的热化学转化,高炉炼铁,化学循环燃烧,固体废物焚烧,石灰立窑煅烧等。此外,本文还全面评估了有效和高效地模拟密集气固反应流动的挑战,特别是在时间和空间上的多物理场和多尺度特征。通过解决这些挑战,本综述有望促进该领域的进一步发展,并增强我们对各种应用中致密气固反应系统的理解和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Energy and Combustion Science
Progress in Energy and Combustion Science 工程技术-工程:化工
CiteScore
59.30
自引率
0.70%
发文量
44
审稿时长
3 months
期刊介绍: Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science. PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信