3D printed emulsion gels stabilized by whey protein isolate/polysaccharide as sustained-release delivery systems of β-carotene

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Lei Feng , Ming Li , Zhuqing Dai , Yayuan Xu , Zhongyuan Zhang , Min Zhang , Dongxing Yu , Dajing Li
{"title":"3D printed emulsion gels stabilized by whey protein isolate/polysaccharide as sustained-release delivery systems of β-carotene","authors":"Lei Feng ,&nbsp;Ming Li ,&nbsp;Zhuqing Dai ,&nbsp;Yayuan Xu ,&nbsp;Zhongyuan Zhang ,&nbsp;Min Zhang ,&nbsp;Dongxing Yu ,&nbsp;Dajing Li","doi":"10.1016/j.carbpol.2025.123429","DOIUrl":null,"url":null,"abstract":"<div><div>The low bioaccessibility of β-carotene limits its application in the food field. 3D printed emulsion gels stabilized by whey protein/polysaccharide were constructed in our previous study, and the stability of β-carotene was improved. However, the release behaviour and bioaccessibility of β-carotene have not been thoroughly explored. This study aimed to explore the effects of different charged polysaccharides on the release and bioaccessibility of β-carotene from 3D printed delivery systems and to analyze their relationship with protein secondary structure. The results showed that the printed systems induced by adding xanthan gum (anionic) had lower degree of hydrolysis (DH) of protein and release of free fatty acids (FFAs), and lower β-carotene release and bioaccessibility. The printed systems induced by adding guar gum (neutral), locust bean gum (neutral) and gum arabic (anionic) exhibited higher DH of protein and release of FFAs (&gt;91 %), higher β-carotene release (&gt;93 %) and bioaccessibility (&gt;30 %). The release of β-carotene from the printed systems during digestion conformed to the logistic model, with frame erosion and Fickian diffusion being main mechanisms. The digestibility, β-carotene release and bioaccessibility of the printed systems were positively correlated with β-turn content. The printed system with guar gum had the highest β-carotene bioaccessibility (33.95 %).</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"355 ","pages":"Article 123429"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725002103","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The low bioaccessibility of β-carotene limits its application in the food field. 3D printed emulsion gels stabilized by whey protein/polysaccharide were constructed in our previous study, and the stability of β-carotene was improved. However, the release behaviour and bioaccessibility of β-carotene have not been thoroughly explored. This study aimed to explore the effects of different charged polysaccharides on the release and bioaccessibility of β-carotene from 3D printed delivery systems and to analyze their relationship with protein secondary structure. The results showed that the printed systems induced by adding xanthan gum (anionic) had lower degree of hydrolysis (DH) of protein and release of free fatty acids (FFAs), and lower β-carotene release and bioaccessibility. The printed systems induced by adding guar gum (neutral), locust bean gum (neutral) and gum arabic (anionic) exhibited higher DH of protein and release of FFAs (>91 %), higher β-carotene release (>93 %) and bioaccessibility (>30 %). The release of β-carotene from the printed systems during digestion conformed to the logistic model, with frame erosion and Fickian diffusion being main mechanisms. The digestibility, β-carotene release and bioaccessibility of the printed systems were positively correlated with β-turn content. The printed system with guar gum had the highest β-carotene bioaccessibility (33.95 %).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信