Numerical investigation of cyclic load effects on geogrid-encased stone columns using a 3D coupled method

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Meixiang Gu, Xiaocong Cai, Yi Lu, Daoling Han
{"title":"Numerical investigation of cyclic load effects on geogrid-encased stone columns using a 3D coupled method","authors":"Meixiang Gu,&nbsp;Xiaocong Cai,&nbsp;Yi Lu,&nbsp;Daoling Han","doi":"10.1016/j.soildyn.2025.109332","DOIUrl":null,"url":null,"abstract":"<div><div>Geosynthetic-encased stone columns (GESCs) represent an efficient and cost-effective solution for enhancing weak soil foundations. The deformation and load-bearing mechanisms of GESC-improved foundations under traffic flow are complicated due to substantial particle movements and soil disruption. A three-dimensional discrete-continuum coupled numerical model was proposed in this study to investigate the cyclic behavior of GESC-improved soft soil. The reliability and accuracy of proposed model was validated through experimental data. The effect of cyclic loads, bearing stratum, and geogrid encasement was investigated. Microscopic investigation of particle movement, contact force distribution, and stress transfer mechanism was performed. The vertical loads transferred from the column to the surrounding soil with the interaction effect between the aggregates and the soil. The stress concentration ratio decreased with the increase in depth. The geogrid encasement facilitated the load transfer process by effectively confining the particles and enhancing the column stiffness. The particles in the low segment of floating column exhibited large downward displacements and punching deformation. The geogrid encasement and cyclic loads contributed to enhanced compaction and coordination number of the aggregates.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"193 ","pages":"Article 109332"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125001253","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Geosynthetic-encased stone columns (GESCs) represent an efficient and cost-effective solution for enhancing weak soil foundations. The deformation and load-bearing mechanisms of GESC-improved foundations under traffic flow are complicated due to substantial particle movements and soil disruption. A three-dimensional discrete-continuum coupled numerical model was proposed in this study to investigate the cyclic behavior of GESC-improved soft soil. The reliability and accuracy of proposed model was validated through experimental data. The effect of cyclic loads, bearing stratum, and geogrid encasement was investigated. Microscopic investigation of particle movement, contact force distribution, and stress transfer mechanism was performed. The vertical loads transferred from the column to the surrounding soil with the interaction effect between the aggregates and the soil. The stress concentration ratio decreased with the increase in depth. The geogrid encasement facilitated the load transfer process by effectively confining the particles and enhancing the column stiffness. The particles in the low segment of floating column exhibited large downward displacements and punching deformation. The geogrid encasement and cyclic loads contributed to enhanced compaction and coordination number of the aggregates.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信