{"title":"A data-driven actuator-line methodology for the simulation of high-lift aircraft wake systems","authors":"S. Bennie , P. Nagy , M. Fossati","doi":"10.1016/j.compfluid.2025.106578","DOIUrl":null,"url":null,"abstract":"<div><div>The actuator-line method is here integrated with a data-driven approach for the investigation of aircraft-induced trailing vortices as generated by landing and take-off configurations with varying levels of high-lift device deflections. It is shown that through coupling the Actuator-Line-Method to a suitable Reduced-Order-Model built upon spanwise aerodynamic force distributions obtained from high-fidelity CFD solution data. The resulting wake from the geometry can be reproduced in a manner that no longer requires an explicit representation of the aircraft geometry within the simulation environment. The result is a method that allows for increased fidelity in the vortex farfield when studying the relevant wake dynamics and evolution during take-off, climb, approach and landing. The accuracy of the proposed method is assessed via a direct comparison to traditional high-fidelity nearfield derived results where it was observed that the induced downstream velocity profile and resulting location of vortex structures displayed a satisfactory level of agreement. With the creation of such a method, the effects of variations in aircraft high-lift deployment can be included within the simulation of downstream vortex pairs in a manner that respects the computational limitations of current hardware.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"291 ","pages":"Article 106578"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025000386","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The actuator-line method is here integrated with a data-driven approach for the investigation of aircraft-induced trailing vortices as generated by landing and take-off configurations with varying levels of high-lift device deflections. It is shown that through coupling the Actuator-Line-Method to a suitable Reduced-Order-Model built upon spanwise aerodynamic force distributions obtained from high-fidelity CFD solution data. The resulting wake from the geometry can be reproduced in a manner that no longer requires an explicit representation of the aircraft geometry within the simulation environment. The result is a method that allows for increased fidelity in the vortex farfield when studying the relevant wake dynamics and evolution during take-off, climb, approach and landing. The accuracy of the proposed method is assessed via a direct comparison to traditional high-fidelity nearfield derived results where it was observed that the induced downstream velocity profile and resulting location of vortex structures displayed a satisfactory level of agreement. With the creation of such a method, the effects of variations in aircraft high-lift deployment can be included within the simulation of downstream vortex pairs in a manner that respects the computational limitations of current hardware.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.