Multispectral stealth structures for simultaneous visible-infrared stealth and efficient heat dissipation

IF 2.3 3区 物理与天体物理 Q2 OPTICS
Zhichang Fu , Siran Jia , Fuqiang Wang , Hao Yan , Ziming Cheng
{"title":"Multispectral stealth structures for simultaneous visible-infrared stealth and efficient heat dissipation","authors":"Zhichang Fu ,&nbsp;Siran Jia ,&nbsp;Fuqiang Wang ,&nbsp;Hao Yan ,&nbsp;Ziming Cheng","doi":"10.1016/j.jqsrt.2025.109397","DOIUrl":null,"url":null,"abstract":"<div><div>Multispectral compatible stealth technologies are critically important in complex warfare environments, as they can effectively deceive various types of detection equipment, including visible light cameras and infrared thermal imagers. However, the integration of multiple stealth functionalities entails increasingly complex design requirements, posing significant challenges to the design of multispectral stealth structures. Herein, a metamaterial structure, composed of single-layer grating and multilayer films, are successfully designed to achieve visible-infrared stealth and efficient heat dissipation. This metamaterial supports visible stealth (0.38–0.78 μm), two–band infrared stealth for both 3–5 μm and 8–14 μm bands and enhances heat dissipation via two non-detection bands at 5–8 μm and 14–17 μm as well. This is demonstrated through the possibility of designing surfaces with different colors matching with background environment while simultaneously achieving minimal emissivity in the 3–5 μm and 8–14 μm bands (only 0.15 and 0.22, respectively) and significant emissivity in the non-detection bands at 5–8 μm and 14–17 μm (reaching 0.79 and 0.72, respectively). This research not only offers theoretical insights for designing metamaterial that combines visible–infrared stealth and heat dissipation but also provides valuable ideas and methodologies for the broader field of radiation regulation research.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"337 ","pages":"Article 109397"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407325000597","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Multispectral compatible stealth technologies are critically important in complex warfare environments, as they can effectively deceive various types of detection equipment, including visible light cameras and infrared thermal imagers. However, the integration of multiple stealth functionalities entails increasingly complex design requirements, posing significant challenges to the design of multispectral stealth structures. Herein, a metamaterial structure, composed of single-layer grating and multilayer films, are successfully designed to achieve visible-infrared stealth and efficient heat dissipation. This metamaterial supports visible stealth (0.38–0.78 μm), two–band infrared stealth for both 3–5 μm and 8–14 μm bands and enhances heat dissipation via two non-detection bands at 5–8 μm and 14–17 μm as well. This is demonstrated through the possibility of designing surfaces with different colors matching with background environment while simultaneously achieving minimal emissivity in the 3–5 μm and 8–14 μm bands (only 0.15 and 0.22, respectively) and significant emissivity in the non-detection bands at 5–8 μm and 14–17 μm (reaching 0.79 and 0.72, respectively). This research not only offers theoretical insights for designing metamaterial that combines visible–infrared stealth and heat dissipation but also provides valuable ideas and methodologies for the broader field of radiation regulation research.
同时实现可见光-红外线隐身和高效散热的多光谱隐身结构
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信