Mariana Gutiérrez-Sánchez , Sofía Flores-Rocha , Amaury Pozos-Guillén , Héctor Flores , Vladimir Escobar-Barrios , Alma Gabriela Palestino-Escobedo , Diana María Escobar-García
{"title":"Design, characterization, and biocompatibility of chitosan-nano-hydroxyapatite/tricalcium phosphate sponges","authors":"Mariana Gutiérrez-Sánchez , Sofía Flores-Rocha , Amaury Pozos-Guillén , Héctor Flores , Vladimir Escobar-Barrios , Alma Gabriela Palestino-Escobedo , Diana María Escobar-García","doi":"10.1016/j.tice.2025.102804","DOIUrl":null,"url":null,"abstract":"<div><div>Chitosan-based sponges, incorporating tricalcium phosphate and hydroxyapatite, are extracellular components that represent a novel and impactful advancement in bone regeneration. Their bioactive composition, porous structure, and controlled release capacity are designed to stimulate osteogenesis effectively and could enhance the interrelations of cells in tissues and organs. The objective is to manufacture and characterize chitosan (CHT)-based sponges with different concentrations of nano-hydroxyapatite (nHAP) and tricalcium phosphate (TCP), as well as evaluate their biocompatibility. Composite sponges were manufactured in different concentrations: CHT (S1), 50:30:20 (S2), 60:20:20 (S3), and 70:20:10 (S4) and characterized by FTIR-ATR, TGA, and swelling. For biocompatibility, a cell proliferation assay, hemocompatibility, alizarin red, and its bactericidal effect were performed. Main groups of CHT are detected, and the presence of phosphate groups characteristic of TCP and nHAP was confirmed by FTIR. The nHAP/TCP content was validated using the Thermo Gravimetric Analysis (TGA), and the swelling tests were carried out with simulated body fluid (SBF), which proved stable for S2 and S3. About the biocompatibility tests of the cell proliferation assay, The TCP and nHAP present in the sponges caused a significant increase in cell proliferation (up 50–80 %). In contrast, in the control sample (S1), cell proliferation decreased without becoming cytotoxic (down 25 %). The hemolysis degree was less than 2 % at the times evaluated. Using alizarin red (ARS), it was shown that the different sponges were able to increase calcium deposits by approximately 10–45 % Through the antibiogram, it is assumed that the zone of inhibition occurs about the amount of CHT present in each sponge. Incorporating nHAP/TCP into CHT sponges favors the physical and thermal stability of the material. The sponges were demonstrated to have biocompatible and osteoinductive properties.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"94 ","pages":"Article 102804"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625000849","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chitosan-based sponges, incorporating tricalcium phosphate and hydroxyapatite, are extracellular components that represent a novel and impactful advancement in bone regeneration. Their bioactive composition, porous structure, and controlled release capacity are designed to stimulate osteogenesis effectively and could enhance the interrelations of cells in tissues and organs. The objective is to manufacture and characterize chitosan (CHT)-based sponges with different concentrations of nano-hydroxyapatite (nHAP) and tricalcium phosphate (TCP), as well as evaluate their biocompatibility. Composite sponges were manufactured in different concentrations: CHT (S1), 50:30:20 (S2), 60:20:20 (S3), and 70:20:10 (S4) and characterized by FTIR-ATR, TGA, and swelling. For biocompatibility, a cell proliferation assay, hemocompatibility, alizarin red, and its bactericidal effect were performed. Main groups of CHT are detected, and the presence of phosphate groups characteristic of TCP and nHAP was confirmed by FTIR. The nHAP/TCP content was validated using the Thermo Gravimetric Analysis (TGA), and the swelling tests were carried out with simulated body fluid (SBF), which proved stable for S2 and S3. About the biocompatibility tests of the cell proliferation assay, The TCP and nHAP present in the sponges caused a significant increase in cell proliferation (up 50–80 %). In contrast, in the control sample (S1), cell proliferation decreased without becoming cytotoxic (down 25 %). The hemolysis degree was less than 2 % at the times evaluated. Using alizarin red (ARS), it was shown that the different sponges were able to increase calcium deposits by approximately 10–45 % Through the antibiogram, it is assumed that the zone of inhibition occurs about the amount of CHT present in each sponge. Incorporating nHAP/TCP into CHT sponges favors the physical and thermal stability of the material. The sponges were demonstrated to have biocompatible and osteoinductive properties.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.