Stratigraphic Controls on CO2 Migration at Sleipner: An Example From a Basin-Floor Fan of the Utsira Formation

IF 2.8 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Basin Research Pub Date : 2025-02-22 DOI:10.1111/bre.70018
Michał Jakub Warchoł, Anna Pontén, Anne-Kari Furre
{"title":"Stratigraphic Controls on CO2 Migration at Sleipner: An Example From a Basin-Floor Fan of the Utsira Formation","authors":"Michał Jakub Warchoł, Anna Pontén, Anne-Kari Furre","doi":"10.1111/bre.70018","DOIUrl":null,"url":null,"abstract":"For nearly three decades, Equinor's Sleipner Carbon Capture and Storage project has demonstrated how the application of geological principles, modelling techniques and analysis of repeated time-lapse (4D) seismic data has helped to characterise the CO<sub>2</sub> plume migration within the late Miocene–early Pliocene Utsira Formation. However, the influence of stratigraphic complexity on fluid migration has been rather poorly understood. This has resulted in a significant degree of uncertainty in the geological characterisation of the storage formation, including the distribution of mudstone-rich elements, which may serve as baffles and barriers for migration of fluid, and elements that allow for their bypass. Our study, utilising high-quality 3D seismic data integrated with wireline-logs, time-lapse seismic and regional contextual information, has shown that the Utsira Formation in the South Viking Graben represents a confined, channelized submarine fan system characterised by a complex stratigraphic architecture. The study has highlighted that the intricate interplay between fan lobes, channel erosion, channel infill and draping of lobes, lobe-complexes and channel incision surfaces by mud-rich layers, provides a first-order control on CO<sub>2</sub> storage compartments and exerts a substantial influence on vertical and lateral fluid flow pathways. The latter is well expressed by the morphology of several mapped CO<sub>2</sub>-filled layers. Both generally discontinuous channel-base mud-rich drapes and more continuous lobe-complex and fan mudstone drapes have been locally compromised by processes linked to channel erosion and sand injection, in some cases combined with faulting and fracturing. This complex stratigraphic pattern has probably been exacerbated by post-depositional deformation that triggered fluid and sediment expulsion from the Utsira Formation and the underlying early-Miocene Skade Formation. These factors allowed for increased vertical connectivity between originally disconnected sandstone bodies and fluid migration from deeper to shallower layers, prior to injection of CO<sub>2</sub>, thus serving as preferred pathways post-injection.","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"31 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/bre.70018","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For nearly three decades, Equinor's Sleipner Carbon Capture and Storage project has demonstrated how the application of geological principles, modelling techniques and analysis of repeated time-lapse (4D) seismic data has helped to characterise the CO2 plume migration within the late Miocene–early Pliocene Utsira Formation. However, the influence of stratigraphic complexity on fluid migration has been rather poorly understood. This has resulted in a significant degree of uncertainty in the geological characterisation of the storage formation, including the distribution of mudstone-rich elements, which may serve as baffles and barriers for migration of fluid, and elements that allow for their bypass. Our study, utilising high-quality 3D seismic data integrated with wireline-logs, time-lapse seismic and regional contextual information, has shown that the Utsira Formation in the South Viking Graben represents a confined, channelized submarine fan system characterised by a complex stratigraphic architecture. The study has highlighted that the intricate interplay between fan lobes, channel erosion, channel infill and draping of lobes, lobe-complexes and channel incision surfaces by mud-rich layers, provides a first-order control on CO2 storage compartments and exerts a substantial influence on vertical and lateral fluid flow pathways. The latter is well expressed by the morphology of several mapped CO2-filled layers. Both generally discontinuous channel-base mud-rich drapes and more continuous lobe-complex and fan mudstone drapes have been locally compromised by processes linked to channel erosion and sand injection, in some cases combined with faulting and fracturing. This complex stratigraphic pattern has probably been exacerbated by post-depositional deformation that triggered fluid and sediment expulsion from the Utsira Formation and the underlying early-Miocene Skade Formation. These factors allowed for increased vertical connectivity between originally disconnected sandstone bodies and fluid migration from deeper to shallower layers, prior to injection of CO2, thus serving as preferred pathways post-injection.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Basin Research
Basin Research 地学-地球科学综合
CiteScore
7.00
自引率
9.40%
发文量
88
审稿时长
>12 weeks
期刊介绍: Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信