Organic Artificial Nerves: Neuromorphic Robotics and Bioelectronics

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Min-Jun Sung, Kwan-Nyeong Kim, Chunghee Kim, Hyun-Haeng Lee, Seung-Woo Lee, Somin Kim, Dae-Gyo Seo, Huanyu Zhou, Tae-Woo Lee
{"title":"Organic Artificial Nerves: Neuromorphic Robotics and Bioelectronics","authors":"Min-Jun Sung, Kwan-Nyeong Kim, Chunghee Kim, Hyun-Haeng Lee, Seung-Woo Lee, Somin Kim, Dae-Gyo Seo, Huanyu Zhou, Tae-Woo Lee","doi":"10.1021/acs.chemrev.4c00571","DOIUrl":null,"url":null,"abstract":"Neuromorphic electronics are inspired by the human brain’s compact, energy-efficient nature and its parallel-processing capabilities. Beyond the brain, the entire human nervous system, with its hierarchical structure, efficiently preprocesses complex sensory information to support high-level neural functions such as perception and memory. Emulating these biological processes, artificial nerve electronics have been developed to replicate the energy-efficient preprocessing observed in human nerves. These systems integrate sensors, artificial neurons, artificial synapses, and actuators to mimic sensory and motor functions, surpassing conventional circuits in sensor-integrated electronics. Organic synaptic transistors (OSTs) are key components in constructing artificial nerves, offering tunable synaptic plasticity for complex sensory processing and the mechanical flexibility required for applications in soft robotics and bioelectronics. Compared to traditional sensor-integrated electronics, early implementations of organic artificial nerves (OANs) incorporating OSTs have demonstrated a higher signal-to-noise ratio, lower power consumption, and simpler circuit designs along with on-device processing capabilities and precise control of actuators and biological limbs, driving progress in neuromorphic robotics and bioelectronics. This paper reviews the materials, device engineering, and system integration of the OAN design, highlights recent advancements in neuromorphic robotics and bioelectronics utilizing the OANs, and discusses current challenges and future research directions.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"29 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c00571","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic electronics are inspired by the human brain’s compact, energy-efficient nature and its parallel-processing capabilities. Beyond the brain, the entire human nervous system, with its hierarchical structure, efficiently preprocesses complex sensory information to support high-level neural functions such as perception and memory. Emulating these biological processes, artificial nerve electronics have been developed to replicate the energy-efficient preprocessing observed in human nerves. These systems integrate sensors, artificial neurons, artificial synapses, and actuators to mimic sensory and motor functions, surpassing conventional circuits in sensor-integrated electronics. Organic synaptic transistors (OSTs) are key components in constructing artificial nerves, offering tunable synaptic plasticity for complex sensory processing and the mechanical flexibility required for applications in soft robotics and bioelectronics. Compared to traditional sensor-integrated electronics, early implementations of organic artificial nerves (OANs) incorporating OSTs have demonstrated a higher signal-to-noise ratio, lower power consumption, and simpler circuit designs along with on-device processing capabilities and precise control of actuators and biological limbs, driving progress in neuromorphic robotics and bioelectronics. This paper reviews the materials, device engineering, and system integration of the OAN design, highlights recent advancements in neuromorphic robotics and bioelectronics utilizing the OANs, and discusses current challenges and future research directions.

Abstract Image

有机人工神经:神经形态机器人学和生物电子学
神经形态电子学的灵感来自人类大脑紧凑、节能的特性及其并行处理能力。在大脑之外,整个人类神经系统,以其层次结构,有效地预处理复杂的感觉信息,以支持高级神经功能,如感知和记忆。模拟这些生物过程,人工神经电子学已经被开发出来,以复制在人类神经中观察到的节能预处理。这些系统集成了传感器、人工神经元、人工突触和执行器来模拟感觉和运动功能,超越了传感器集成电子学中的传统电路。有机突触晶体管(OSTs)是构建人工神经的关键部件,为复杂的感觉处理提供可调的突触可塑性,并为软机器人和生物电子学的应用提供机械灵活性。与传统的传感器集成电子技术相比,结合OSTs的有机人工神经(OANs)的早期实现具有更高的信噪比、更低的功耗、更简单的电路设计,以及设备上的处理能力和对执行器和生物肢体的精确控制,推动了神经形态机器人和生物电子学的发展。本文综述了OAN设计的材料、器件工程和系统集成,重点介绍了利用OAN的神经形态机器人和生物电子学的最新进展,并讨论了当前面临的挑战和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信