6H-Intermediate Phase Enabled Slow Crystal Growth of Tin Halide Perovskites for Indoor Photovoltaics

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Muhammad Abdel-Shakour, Junfang Wang, Junjie Huang, Zhen Gao, Yongle Pan, Xiangyue Meng
{"title":"6H-Intermediate Phase Enabled Slow Crystal Growth of Tin Halide Perovskites for Indoor Photovoltaics","authors":"Muhammad Abdel-Shakour, Junfang Wang, Junjie Huang, Zhen Gao, Yongle Pan, Xiangyue Meng","doi":"10.1002/anie.202421547","DOIUrl":null,"url":null,"abstract":"The rapid expansion of Big Data and Internet of Things (IoT) has driven significant advancements in indoor photovoltaics (IPVs), which provide power to wireless IoT devices. Tin halide perovskites (THPs) have garnered significant attention for IPVs due to their excellent optoelectronic properties without the environmental risks of lead exposure. However, THPs face challenges in controlling their fast crystallization process. Here, we introduce a novel approach to precisely control the crystallization kinetics of FASnI2Br perovskite via the formation of the 6H-intermediate phase, supported by the mesomeric (+M) interaction effect of 4-aminopyridine hydrochloride (4APCl) in the perovskite precursor. The grazing-incidence wide-angle X-ray scattering measurements indicated the formation of 6H-intermediate phase for the FASnI2Br-4APCl perovskite during the crystallization process. The in-situ ultraviolet-visible absorption spectroscopy during the spin coating and annealing process confirmed the reduction of crystal growth rate after the 6H-intermediate phase formation. Thus, high-quality perovskite films were obtained with reduced defects. The resulting IPVs achieved an efficiency of 21.55% under indoor illumination at 1000 lux, exceeding all types of lead-free perovskite IPVs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"50 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421547","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid expansion of Big Data and Internet of Things (IoT) has driven significant advancements in indoor photovoltaics (IPVs), which provide power to wireless IoT devices. Tin halide perovskites (THPs) have garnered significant attention for IPVs due to their excellent optoelectronic properties without the environmental risks of lead exposure. However, THPs face challenges in controlling their fast crystallization process. Here, we introduce a novel approach to precisely control the crystallization kinetics of FASnI2Br perovskite via the formation of the 6H-intermediate phase, supported by the mesomeric (+M) interaction effect of 4-aminopyridine hydrochloride (4APCl) in the perovskite precursor. The grazing-incidence wide-angle X-ray scattering measurements indicated the formation of 6H-intermediate phase for the FASnI2Br-4APCl perovskite during the crystallization process. The in-situ ultraviolet-visible absorption spectroscopy during the spin coating and annealing process confirmed the reduction of crystal growth rate after the 6H-intermediate phase formation. Thus, high-quality perovskite films were obtained with reduced defects. The resulting IPVs achieved an efficiency of 21.55% under indoor illumination at 1000 lux, exceeding all types of lead-free perovskite IPVs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信