Lipophagy acts as a nutritional adaptation mechanism for the filamentous entomopathogenic fungus Beauveria bassiana to colonize within the hosts

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jin-Li Ding, Ming-Guang Feng, Sheng-Hua Ying
{"title":"Lipophagy acts as a nutritional adaptation mechanism for the filamentous entomopathogenic fungus Beauveria bassiana to colonize within the hosts","authors":"Jin-Li Ding, Ming-Guang Feng, Sheng-Hua Ying","doi":"10.1016/j.jare.2025.02.025","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Metabolic adaptation to various nutrients is crucial for the pathogenic growth and virulence of filamentous fungal pathogens. Despite its importance, the mechanisms underlying fungal adaptation to nutrient shifts, especially at the subcellular level, remain incompletely understood.<h3>Objectives</h3>Our study aims to investigate the mechanisms involved in metabolic adaptation in filamentous fungi.<h3>Methods</h3>The filamentous entomopathogenic fungus <em>Beauveria bassiana</em> was used as a representative of filamentous fungi. Gene functional analyses were characterized via gene disruption and complementation. Vacuolar targeting of lipid droplets were determined with transmission electron microscopy and fluorescence microscopy. Protein interaction was determined with yeast-two hybridization and co-immunoprecipitation methods.<h3>Results</h3>The filamentous entomopathogenic fungus <em>Beauveria bassiana</em> was found to initiate autophagy, and further lipophagy, when transitioning from utilizing fatty acids to carbohydrates, while also proliferating in the host hemocoel. The disruption of three critical autophagy-related genes (<em>ATG</em>), specifically <em>BbATG1</em>, <em>BbATG8</em>, and <em>BbATG11</em>, hindered the vacuolar targeting of lipid droplets (LD) and worsened the impaired growth and dimorphism in fatty acid medium subjected to cell-wall perturbance stress. Notably, BbSun4, a protein containing a SUN4 domain, was required for lipophagy, as it tagged the lipid droplets. BbMcp, which features a methyl-accepting chemotaxis-like domain, engaged directly with both BbAtg8 and BbSun4, thereby enhancing the interaction between these proteins. It is important to note that BbMcp solely facilitated lipophagy during nutrient shifts rather than during starvation stress. The loss of lipophagy proved detrimental to the integrity of the fungal cytomembrane, growth, and overall development, ultimately leading to a marked reduction in virulence.<h3>Conclusion</h3>Lipophagy is a molecular pathway that consists of a selective autophagy receptor, a bridging factor, and Atg8, which is essential for fungal metabolic adaptation during colonizing within the host niches. This study deepens our understanding of the molecular mechanism underling the fungus-host interaction and vacuolar targeting pathways in selective autophagy.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"21 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.02.025","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Metabolic adaptation to various nutrients is crucial for the pathogenic growth and virulence of filamentous fungal pathogens. Despite its importance, the mechanisms underlying fungal adaptation to nutrient shifts, especially at the subcellular level, remain incompletely understood.

Objectives

Our study aims to investigate the mechanisms involved in metabolic adaptation in filamentous fungi.

Methods

The filamentous entomopathogenic fungus Beauveria bassiana was used as a representative of filamentous fungi. Gene functional analyses were characterized via gene disruption and complementation. Vacuolar targeting of lipid droplets were determined with transmission electron microscopy and fluorescence microscopy. Protein interaction was determined with yeast-two hybridization and co-immunoprecipitation methods.

Results

The filamentous entomopathogenic fungus Beauveria bassiana was found to initiate autophagy, and further lipophagy, when transitioning from utilizing fatty acids to carbohydrates, while also proliferating in the host hemocoel. The disruption of three critical autophagy-related genes (ATG), specifically BbATG1, BbATG8, and BbATG11, hindered the vacuolar targeting of lipid droplets (LD) and worsened the impaired growth and dimorphism in fatty acid medium subjected to cell-wall perturbance stress. Notably, BbSun4, a protein containing a SUN4 domain, was required for lipophagy, as it tagged the lipid droplets. BbMcp, which features a methyl-accepting chemotaxis-like domain, engaged directly with both BbAtg8 and BbSun4, thereby enhancing the interaction between these proteins. It is important to note that BbMcp solely facilitated lipophagy during nutrient shifts rather than during starvation stress. The loss of lipophagy proved detrimental to the integrity of the fungal cytomembrane, growth, and overall development, ultimately leading to a marked reduction in virulence.

Conclusion

Lipophagy is a molecular pathway that consists of a selective autophagy receptor, a bridging factor, and Atg8, which is essential for fungal metabolic adaptation during colonizing within the host niches. This study deepens our understanding of the molecular mechanism underling the fungus-host interaction and vacuolar targeting pathways in selective autophagy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信