Experimental Quantum Advantage in the Odd-Cycle Game

IF 9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
P. Drmota, D. Main, E. M. Ainley, A. Agrawal, G. Araneda, D. P. Nadlinger, B. C. Nichol, R. Srinivas, A. Cabello, D. M. Lucas
{"title":"Experimental Quantum Advantage in the Odd-Cycle Game","authors":"P. Drmota, D. Main, E. M. Ainley, A. Agrawal, G. Araneda, D. P. Nadlinger, B. C. Nichol, R. Srinivas, A. Cabello, D. M. Lucas","doi":"10.1103/physrevlett.134.070201","DOIUrl":null,"url":null,"abstract":"We report the first experimental demonstration of the odd-cycle game. We entangle two atoms separated by ∼</a:mo>2</a:mn></a:mtext></a:mtext>m</a:mi></a:mrow></a:math>, and the players use them to win the odd-cycle game with a probability <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mo>∼</d:mo><d:mn>26</d:mn><d:mi>σ</d:mi></d:math> above that allowed by the best classical strategy. The experiment implements the optimal quantum strategy, is free of loopholes, and achieves 97.8(3)% of the theoretical limit to the quantum winning probability. We perform the associated Bell test and measure a nonlocal content of 0.54(2)—the largest value for physically separate devices, free of the detection loophole, ever observed. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"14 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.070201","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report the first experimental demonstration of the odd-cycle game. We entangle two atoms separated by ∼2m, and the players use them to win the odd-cycle game with a probability 26σ above that allowed by the best classical strategy. The experiment implements the optimal quantum strategy, is free of loopholes, and achieves 97.8(3)% of the theoretical limit to the quantum winning probability. We perform the associated Bell test and measure a nonlocal content of 0.54(2)—the largest value for physically separate devices, free of the detection loophole, ever observed. Published by the American Physical Society 2025
奇循环博弈中的实验量子优势
本文报道了奇循环对策的第一个实验证明。我们将两个相距~ 2m的原子纠缠在一起,玩家利用它们以比最佳经典策略允许的概率高~ 26σ的概率赢得奇循环博弈。实验实现了最优量子策略,不存在漏洞,量子获胜概率达到理论极限的97.8(3)%。我们进行了相关的贝尔测试,并测量了0.54(2)的非局部含量,这是迄今为止观察到的物理分离设备的最大值,没有检测漏洞。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信