{"title":"Typhoon induced mesoscale cyclonic eddy a long neglected linkage between atmosphere ocean and climate","authors":"Jia-Yi Lin, Hua Ho, Ganesh Gopalakrishnan, Zhe-Wen Zheng, Ruo-Shan Tseng, Jiayi Pan, Chung-Ru Ho, Quanan Zheng","doi":"10.1038/s41612-025-00946-9","DOIUrl":null,"url":null,"abstract":"<p>This study investigates typhoon-induced mesoscale cyclonic eddies (TIME) in the western North Pacific. A total of 69 potential TIME candidates (1995–2018) were identified using global mesoscale eddy trajectory atlas and JTWC typhoon data. Subsequently, systematic analysis procedures were applied to those candidates. Analysis revealed that three cyclonic ocean eddies (COEs) were likely triggered by typhoons Rosie (1997), Nida (2009), and Ma-on (2011). Numerical modeling with a regional ocean modeling system (ROMS) reconstructed the ocean environment during these events. Semi-idealized experiments confirmed that typical TIME events arise from the energy transfer between kinetic and potential energy, with vertical diffusion and horizontal advection contributing significantly to COE spin-up. Divergence and vertical advection terms suppress excessive COE growth. Given the increasing intensity and slower movement of typhoons due to global warming, more TIMEs are expected in the future. Stronger, longer-lasting TIMEs may have significant climate impacts and should be a focus of future research.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"82 2 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00946-9","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates typhoon-induced mesoscale cyclonic eddies (TIME) in the western North Pacific. A total of 69 potential TIME candidates (1995–2018) were identified using global mesoscale eddy trajectory atlas and JTWC typhoon data. Subsequently, systematic analysis procedures were applied to those candidates. Analysis revealed that three cyclonic ocean eddies (COEs) were likely triggered by typhoons Rosie (1997), Nida (2009), and Ma-on (2011). Numerical modeling with a regional ocean modeling system (ROMS) reconstructed the ocean environment during these events. Semi-idealized experiments confirmed that typical TIME events arise from the energy transfer between kinetic and potential energy, with vertical diffusion and horizontal advection contributing significantly to COE spin-up. Divergence and vertical advection terms suppress excessive COE growth. Given the increasing intensity and slower movement of typhoons due to global warming, more TIMEs are expected in the future. Stronger, longer-lasting TIMEs may have significant climate impacts and should be a focus of future research.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.