Penta-Octa B4C2N3: A New 2D Material for High-Performance Energy Applications

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Xihao Chen, Jiazhuo Wang, Nicolas F. Martins, Julio R. Sambrano, José A. S. Laranjeira
{"title":"Penta-Octa B4C2N3: A New 2D Material for High-Performance Energy Applications","authors":"Xihao Chen, Jiazhuo Wang, Nicolas F. Martins, Julio R. Sambrano, José A. S. Laranjeira","doi":"10.1021/acs.langmuir.4c05139","DOIUrl":null,"url":null,"abstract":"Penta-octagraphene (POG) is a newly suggested two-dimensional carbon allotrope recognized for its distinct configuration and fascinating electronic characteristics. This work presents a new inorganic counterpart of POG, named POG-B<sub>4</sub>C<sub>2</sub>N<sub>3</sub>, designed through density functional theory (DFT) calculations. This new structure exhibits a direct band gap transition at the X-point, measured at 0.32/0.86 eV with PBE/HSE functionals. Mechanical properties were comprehensively assessed, showcasing its Young’s modulus (<i>Y</i><sub><i>max</i></sub>/<i>Y</i><sub><i>min</i></sub> = 157.12/100.84 N/m) and shear modulus (<i>G</i><sub><i>max</i></sub>/<i>G</i><sub><i>min</i></sub> = 83.03/38.09 N/m), alongside Poisson’s ratio (ν<sub><i>max</i></sub>/ν<sub><i>min</i></sub> = 0.58/-0.09), indicating that POG-B<sub>4</sub>C<sub>2</sub>N<sub>3</sub> is an auxetic material. Additionally, Li decoration on this monolayer was studied to investigate its potential to enhance hydrogen storage through physisorption. The Li@POG-B<sub>4</sub>C<sub>2</sub>N<sub>3</sub> system shows robust physisorption (adsorption energies ranging from −0.35 to −0.19 eV), high hydrogen storage capacity (8.35 wt %), and effective hydrogen desorption dynamics, positioning this novel material as a promising platform for reversible hydrogen storage.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"17 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c05139","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Penta-octagraphene (POG) is a newly suggested two-dimensional carbon allotrope recognized for its distinct configuration and fascinating electronic characteristics. This work presents a new inorganic counterpart of POG, named POG-B4C2N3, designed through density functional theory (DFT) calculations. This new structure exhibits a direct band gap transition at the X-point, measured at 0.32/0.86 eV with PBE/HSE functionals. Mechanical properties were comprehensively assessed, showcasing its Young’s modulus (Ymax/Ymin = 157.12/100.84 N/m) and shear modulus (Gmax/Gmin = 83.03/38.09 N/m), alongside Poisson’s ratio (νmaxmin = 0.58/-0.09), indicating that POG-B4C2N3 is an auxetic material. Additionally, Li decoration on this monolayer was studied to investigate its potential to enhance hydrogen storage through physisorption. The Li@POG-B4C2N3 system shows robust physisorption (adsorption energies ranging from −0.35 to −0.19 eV), high hydrogen storage capacity (8.35 wt %), and effective hydrogen desorption dynamics, positioning this novel material as a promising platform for reversible hydrogen storage.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信