{"title":"Janus Particles Synthesized via Vapor-Phase Coupling Polymerization Protocol","authors":"Kazuma Kuroiwa, Kazusa Takeuchi, Tomoyasu Hirai, Yoshinobu Nakamura, Yuya Oaki, Syuji Fujii","doi":"10.1021/acs.langmuir.4c05061","DOIUrl":null,"url":null,"abstract":"The vapor-phase polymerization of pyrrole in the presence of polystyrene (PS) particles adsorbed at the air–water interface successfully leads to the formation of PS/polypyrrole (PPy) Janus particles where only the surface in contact with the air phase is regioselectively covered with the PPy nanolayer. The coverage area of the PPy nanolayer on the Janus particles, and therefore the contact angle of Janus particles at the air–liquid interface, decreases with a decrease in surface tension of liquid by the addition of isopropanol. The contact angle of particles at the interface decreases after the polymerization, which should be because the pyrrole monomer dissolved in the water phase from the gas phase promotes the wetting of the liquid to the PS particles by decreasing the surface tension of the liquid. Controlling the PS particle size realizes the formation of PS/PPy Janus particles with sizes ranging between 5 and 1000 μm. Furthermore, the Janus particles are demonstrated to be oriented at the air–water interface with the hydrophilic PS side toward the water phase and the hydrophobic PPy side toward the air phase, realizing stabilization of an armored bubble in the water medium.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"47 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c05061","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The vapor-phase polymerization of pyrrole in the presence of polystyrene (PS) particles adsorbed at the air–water interface successfully leads to the formation of PS/polypyrrole (PPy) Janus particles where only the surface in contact with the air phase is regioselectively covered with the PPy nanolayer. The coverage area of the PPy nanolayer on the Janus particles, and therefore the contact angle of Janus particles at the air–liquid interface, decreases with a decrease in surface tension of liquid by the addition of isopropanol. The contact angle of particles at the interface decreases after the polymerization, which should be because the pyrrole monomer dissolved in the water phase from the gas phase promotes the wetting of the liquid to the PS particles by decreasing the surface tension of the liquid. Controlling the PS particle size realizes the formation of PS/PPy Janus particles with sizes ranging between 5 and 1000 μm. Furthermore, the Janus particles are demonstrated to be oriented at the air–water interface with the hydrophilic PS side toward the water phase and the hydrophobic PPy side toward the air phase, realizing stabilization of an armored bubble in the water medium.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).