Magnetic Bloch states at integer flux quanta induced by super-moiré potential in graphene aligned with twisted boron nitride

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yaqi Ma, Meizhen Huang, Xu Zhang, Weixiong Hu, Zishu Zhou, Kai Feng, Wenhui Li, Yong Chen, Chenxuan Lou, Weikang Zhang, Haoxi Ji, Yibo Wang, Zefei Wu, Xiaodong Cui, Wang Yao, Shichao Yan, Zi Yang Meng, Ning Wang
{"title":"Magnetic Bloch states at integer flux quanta induced by super-moiré potential in graphene aligned with twisted boron nitride","authors":"Yaqi Ma, Meizhen Huang, Xu Zhang, Weixiong Hu, Zishu Zhou, Kai Feng, Wenhui Li, Yong Chen, Chenxuan Lou, Weikang Zhang, Haoxi Ji, Yibo Wang, Zefei Wu, Xiaodong Cui, Wang Yao, Shichao Yan, Zi Yang Meng, Ning Wang","doi":"10.1038/s41467-025-57111-2","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional electron systems in both magnetic fields and periodic potentials are described by the Hofstadter butterfly, a fundamental problem of solid-state physics. While moiré systems provide a powerful method to realize this type of spectrum, previous experiments have been limited to fractional flux quanta regime, due to the difficulty of building ~ 50 nm periodic modulations. Here, we demonstrate a super-moiré strategy to overcome this challenge. By aligning monolayer graphene (G) with 1.0° twisted hexagonal boron nitride (t-hBN), a 63.2 nm bichromatic G/t-hBN super-moiré is constructed, made possible by exploiting the electrostatic nature of t-hBN potential. Under magnetic field <span>\\(B\\)</span>, magnetic Bloch states at <span>\\(\\phi /{\\phi }_{0}=1-9\\)</span> are achieved and observed as integer Brown-Zak oscillations, expanding the flux quanta from fractions to integers. Theoretical analysis reproduces these experimental findings. This work opens promising avenues to study unexplored Hofstadter butterfly, explore emergent topological order at integer flux quanta and engineer long-wavelength periodic modulations.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"82 2 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57111-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional electron systems in both magnetic fields and periodic potentials are described by the Hofstadter butterfly, a fundamental problem of solid-state physics. While moiré systems provide a powerful method to realize this type of spectrum, previous experiments have been limited to fractional flux quanta regime, due to the difficulty of building ~ 50 nm periodic modulations. Here, we demonstrate a super-moiré strategy to overcome this challenge. By aligning monolayer graphene (G) with 1.0° twisted hexagonal boron nitride (t-hBN), a 63.2 nm bichromatic G/t-hBN super-moiré is constructed, made possible by exploiting the electrostatic nature of t-hBN potential. Under magnetic field \(B\), magnetic Bloch states at \(\phi /{\phi }_{0}=1-9\) are achieved and observed as integer Brown-Zak oscillations, expanding the flux quanta from fractions to integers. Theoretical analysis reproduces these experimental findings. This work opens promising avenues to study unexplored Hofstadter butterfly, explore emergent topological order at integer flux quanta and engineer long-wavelength periodic modulations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信