External Validation of Raman Spectroscopy for Lyme Disease Diagnostics.

Isaac D Juárez, Aidan P Holman, Elizabeth J Horn, Artem S Rogovskyy, Dmitry Kurouski
{"title":"External Validation of Raman Spectroscopy for Lyme Disease Diagnostics.","authors":"Isaac D Juárez, Aidan P Holman, Elizabeth J Horn, Artem S Rogovskyy, Dmitry Kurouski","doi":"10.1002/jbio.202400520","DOIUrl":null,"url":null,"abstract":"<p><p>Lyme disease (LD), caused by Borreliella burgdorferi, is the most common tick-borne illness in the United States, yet early-stage diagnosis remains challenging due to the limitations of current serological diagnostics. Raman spectroscopy (RS), paired with partial least squares discriminant analysis (PLS-DA), showed promise as an alternative diagnostic tool. Using RS, we analyzed 107 coded human blood samples (42 LD-positive and 65 LD-negative) obtained from the Lyme Disease Biobank. PLS-DA models showed nearly perfect internal validation performance with a sensitivity and specificity of 97.1% and 100.0%, respectively, indicating robust predictive capabilities. External validation of the developed chemometrics model with 80/20 training/validation split of all spectra gave true positive rates of 92.7% and 87.3% for serological positive and negative spectra, respectively. These findings highlight the potential of RS as a rapid and noninvasive diagnostic platform for LD, particularly when integrated with machine learning.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400520"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lyme disease (LD), caused by Borreliella burgdorferi, is the most common tick-borne illness in the United States, yet early-stage diagnosis remains challenging due to the limitations of current serological diagnostics. Raman spectroscopy (RS), paired with partial least squares discriminant analysis (PLS-DA), showed promise as an alternative diagnostic tool. Using RS, we analyzed 107 coded human blood samples (42 LD-positive and 65 LD-negative) obtained from the Lyme Disease Biobank. PLS-DA models showed nearly perfect internal validation performance with a sensitivity and specificity of 97.1% and 100.0%, respectively, indicating robust predictive capabilities. External validation of the developed chemometrics model with 80/20 training/validation split of all spectra gave true positive rates of 92.7% and 87.3% for serological positive and negative spectra, respectively. These findings highlight the potential of RS as a rapid and noninvasive diagnostic platform for LD, particularly when integrated with machine learning.

由勃氏杆菌(Borreliella burgdorferi)引起的莱姆病(LD)是美国最常见的蜱媒疾病,但由于目前血清学诊断的局限性,早期诊断仍具有挑战性。拉曼光谱(RS)与偏最小二乘判别分析(PLS-DA)相配合,有望成为一种替代诊断工具。利用 RS,我们分析了从莱姆病生物库中获得的 107 份编码人体血液样本(42 份 LD 阳性样本和 65 份 LD 阴性样本)。PLS-DA 模型显示出近乎完美的内部验证性能,灵敏度和特异性分别为 97.1% 和 100.0%,显示出强大的预测能力。通过对所有光谱进行 80/20 的训练/验证分配,对所开发的化学计量学模型进行了外部验证,结果显示血清学阳性和阴性光谱的真阳性率分别为 92.7% 和 87.3%。这些发现凸显了 RS 作为一种快速、无创的 LD 诊断平台的潜力,尤其是在与机器学习相结合时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信