Precision non-invasive brain stimulation: an in silico pipeline for personalized control of brain dynamics.

Fariba Karimi, Melanie Steiner, Taylor Newton, Bryn Alexander A Lloyd, Antonino M Cassarà, Paul de Fontenay, Silvia Farcito, Jan Paul Triebkorn, Elena Beanato, Huifang Wang, Elisabetta Iavarone, Friedhelm C Hummel, Niels Kuster, Viktor Jirsa, Esra Neufeld
{"title":"Precision non-invasive brain stimulation: an in silico pipeline for personalized control of brain dynamics.","authors":"Fariba Karimi, Melanie Steiner, Taylor Newton, Bryn Alexander A Lloyd, Antonino M Cassarà, Paul de Fontenay, Silvia Farcito, Jan Paul Triebkorn, Elena Beanato, Huifang Wang, Elisabetta Iavarone, Friedhelm C Hummel, Niels Kuster, Viktor Jirsa, Esra Neufeld","doi":"10.1088/1741-2552/adb88f","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Non-invasive brain stimulation (NIBS) offers therapeutic benefits for various brain disorders. Personalization may enhance these benefits by optimizing stimulation parameters for individual subjects.</p><p><strong>Approach: </strong>We present a computational pipeline for simulating and assessing the effects of NIBS using personalized, large-scale brain network activity models. Using structural MRI and diffusion-weighted imaging data, the pipeline leverages a convolutional neural network-based segmentation algorithm to generate subject-specific head models with up to 40 tissue types and personalized dielectric properties. We integrate electromagnetic simulations of NIBS exposure with whole-brain network models to predict NIBS-dependent perturbations in brain dynamics, simulate the resulting EEG traces, and quantify metrics of brain dynamics.</p><p><strong>Main results: </strong>The pipeline is implemented on o2S2PARC, an open, cloud-based infrastructure designed for collaborative and reproducible computational life science. Furthermore, a dedicated planning tool provides guidance for optimizing electrode placements for transcranial temporal interference stimulation. In two proof-of-concept applications, we demonstrate that: (i) transcranial alternating current stimulation produces expected shifts in the EEG spectral response, and (ii) simulated baseline network activity exhibits physiologically plausible fluctuations in inter-hemispheric synchronization.</p><p><strong>Significance: </strong>This pipeline facilitates a shift from exposure-based to response-driven optimization of NIBS, supporting new stimulation paradigms that steer brain dynamics towards desired activity patterns in a controlled manner.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adb88f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Non-invasive brain stimulation (NIBS) offers therapeutic benefits for various brain disorders. Personalization may enhance these benefits by optimizing stimulation parameters for individual subjects.

Approach: We present a computational pipeline for simulating and assessing the effects of NIBS using personalized, large-scale brain network activity models. Using structural MRI and diffusion-weighted imaging data, the pipeline leverages a convolutional neural network-based segmentation algorithm to generate subject-specific head models with up to 40 tissue types and personalized dielectric properties. We integrate electromagnetic simulations of NIBS exposure with whole-brain network models to predict NIBS-dependent perturbations in brain dynamics, simulate the resulting EEG traces, and quantify metrics of brain dynamics.

Main results: The pipeline is implemented on o2S2PARC, an open, cloud-based infrastructure designed for collaborative and reproducible computational life science. Furthermore, a dedicated planning tool provides guidance for optimizing electrode placements for transcranial temporal interference stimulation. In two proof-of-concept applications, we demonstrate that: (i) transcranial alternating current stimulation produces expected shifts in the EEG spectral response, and (ii) simulated baseline network activity exhibits physiologically plausible fluctuations in inter-hemispheric synchronization.

Significance: This pipeline facilitates a shift from exposure-based to response-driven optimization of NIBS, supporting new stimulation paradigms that steer brain dynamics towards desired activity patterns in a controlled manner.

精确的非侵入性脑刺激:用于脑动力学个性化控制的硅管道。
目的:非侵入性脑刺激(NIBS)治疗多种脑部疾病。个性化可以通过优化个体受试者的刺激参数来增强这些益处。方法:我们提出了一个计算管道来模拟和评估NIBS的效果,使用个性化的、大规模的大脑网络活动模型。利用结构MRI和扩散加权成像数据,该管道利用基于卷积神经网络的分割算法生成具有多达40种组织类型和个性化介电特性的受试者特定头部模型。我们将NIBS暴露的电磁模拟与全脑网络模型相结合,以预测脑动力学中NIBS依赖性的扰动,模拟由此产生的EEG痕迹,并量化脑动力学指标。主要成果:该管道在o2S2PARC上实现,o2S2PARC是一个开放的、基于云的基础设施,专为协作和可复制的计算生命科学而设计。此外,一个专门的规划工具提供了优化电极放置经颅颞叶干扰刺激的指导。在两个概念验证应用中,我们证明:(i)经颅交流电刺激在脑电图频谱响应中产生预期的移位,(ii)模拟的基线网络活动在半球间同步中表现出生理上似是而非的波动。意义:该管道促进了NIBS从基于暴露到响应驱动的优化转变,支持新的刺激范式,以可控的方式将大脑动力学引导到所需的活动模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信