[Optimized interaction with Large Language Models : A practical guide to Prompt Engineering and Retrieval-Augmented Generation].

Radiologie (Heidelberg, Germany) Pub Date : 2025-04-01 Epub Date: 2025-02-21 DOI:10.1007/s00117-025-01416-2
Anna Fink, Alexander Rau, Elmar Kotter, Fabian Bamberg, Maximilian Frederik Russe
{"title":"[Optimized interaction with Large Language Models : A practical guide to Prompt Engineering and Retrieval-Augmented Generation].","authors":"Anna Fink, Alexander Rau, Elmar Kotter, Fabian Bamberg, Maximilian Frederik Russe","doi":"10.1007/s00117-025-01416-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Given the increasing number of radiological examinations, large language models (LLMs) offer promising support in radiology. Optimized interaction is essential to ensure reliable results.</p><p><strong>Objectives: </strong>This article provides an overview of interaction techniques such as prompt engineering, zero-shot learning, and retrieval-augmented generation (RAG) and gives practical tips for their application in radiology.</p><p><strong>Materials and methods: </strong>Demonstration of interaction techniques based on practical examples with concrete recommendations for their application in routine radiological practice.</p><p><strong>Results: </strong>Advanced interaction techniques allow task-specific adaptation of LLMs without the need for retraining. The creation of precise prompts and the use of zero-shot and few-shot learning can significantly improve response quality. RAG enables the integration of current and domain-specific information into LLM tools, increasing the accuracy and relevance of the generated content.</p><p><strong>Conclusions: </strong>The use of prompt engineering, zero-shot and few-shot learning, and RAG can optimize interaction with LLMs in radiology. Through these targeted strategies, radiologists can efficiently integrate general chatbots into routine practice to improve patient care.</p>","PeriodicalId":74635,"journal":{"name":"Radiologie (Heidelberg, Germany)","volume":" ","pages":"235-242"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00117-025-01416-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Given the increasing number of radiological examinations, large language models (LLMs) offer promising support in radiology. Optimized interaction is essential to ensure reliable results.

Objectives: This article provides an overview of interaction techniques such as prompt engineering, zero-shot learning, and retrieval-augmented generation (RAG) and gives practical tips for their application in radiology.

Materials and methods: Demonstration of interaction techniques based on practical examples with concrete recommendations for their application in routine radiological practice.

Results: Advanced interaction techniques allow task-specific adaptation of LLMs without the need for retraining. The creation of precise prompts and the use of zero-shot and few-shot learning can significantly improve response quality. RAG enables the integration of current and domain-specific information into LLM tools, increasing the accuracy and relevance of the generated content.

Conclusions: The use of prompt engineering, zero-shot and few-shot learning, and RAG can optimize interaction with LLMs in radiology. Through these targeted strategies, radiologists can efficiently integrate general chatbots into routine practice to improve patient care.

[与大型语言模型的优化交互:提示工程和检索增强生成的实用指南]。
背景:随着放射学检查数量的增加,大型语言模型(LLMs)为放射学提供了有希望的支持。优化交互对于确保可靠的结果至关重要。目的:本文概述了诸如提示工程、零射击学习和检索增强生成(RAG)等交互技术,并给出了它们在放射学中的应用的实用技巧。材料和方法:基于实例的相互作用技术演示,并对其在常规放射实践中的应用提出具体建议。结果:先进的交互技术允许llm在不需要再培训的情况下适应特定的任务。创建精确的提示以及使用零射击和少射击学习可以显着提高响应质量。RAG能够将当前和特定领域的信息集成到LLM工具中,从而提高生成内容的准确性和相关性。结论:使用即时工程、零次和少次学习以及RAG可以优化与放射学llm的互动。通过这些有针对性的策略,放射科医生可以有效地将一般聊天机器人整合到日常实践中,以改善患者护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信