The state-of-the-art of invasive brain-computer interfaces in humans: a systematic review and individual patient meta-analysis.

Mervyn Jun Rui Lim, Jack Yu Tung Lo, Yong Yi Tan, Hong-Yi Lin, Yuhang Wang, Dewei Tan, Eugene Wang, Yin Yin Naing Ma, Joel Jia Wei Ng, Ryan Ashraf Jefree, Yeo Tseng Tsai
{"title":"The state-of-the-art of invasive brain-computer interfaces in humans: a systematic review and individual patient meta-analysis.","authors":"Mervyn Jun Rui Lim, Jack Yu Tung Lo, Yong Yi Tan, Hong-Yi Lin, Yuhang Wang, Dewei Tan, Eugene Wang, Yin Yin Naing Ma, Joel Jia Wei Ng, Ryan Ashraf Jefree, Yeo Tseng Tsai","doi":"10.1088/1741-2552/adb88e","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Invasive brain-computer interfaces (iBCIs) have evolved significantly since the first neurotrophic electrode was implanted in a human subject three decades ago. Since then, both hardware and software advances have increased the iBCI performance to enable tasks such as decoding conversations in real-time and manipulating external limb prostheses with haptic feedback. In this systematic review, we aim to evaluate the advances in iBCI hardware, software and functionality and describe challenges and opportunities in the iBCI field.<i>Approach.</i>Medline, EMBASE, PubMed and Cochrane databases were searched from inception until 13 April 2024. Primary studies reporting the use of iBCI in human subjects to restore function were included. Endpoints extracted include iBCI electrode type, iBCI implantation, decoder algorithm, iBCI effector, testing and training methodology and functional outcomes. Narrative synthesis of outcomes was done with a focus on hardware and software development trends over time. Individual patient data (IPD) was also collected and an IPD meta-analysis was done to identify factors significant to iBCI performance.<i>Main results.</i>93 studies involving 214 patients were included in this systematic review. The median task performance accuracy for cursor control tasks was 76.00% (Interquartile range [IQR] = 21.2), for motor tasks was 80.00% (IQR = 23.3), and for communication tasks was 93.27% (IQR = 15.3). Current advances in iBCI software include use of recurrent neural network architectures as decoders, while hardware advances such as intravascular stentrodes provide a less invasive alternative for neural recording. Challenges include the lack of standardized testing paradigms for specific functional outcomes and issues with portability and chronicity limiting iBCI usage to laboratory settings.<i>Significance.</i>Our systematic review demonstrated the exponential rate at which iBCIs have evolved over the past two decades. Yet, more work is needed for widespread clinical adoption and translation to long-term home-use.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adb88e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Invasive brain-computer interfaces (iBCIs) have evolved significantly since the first neurotrophic electrode was implanted in a human subject three decades ago. Since then, both hardware and software advances have increased the iBCI performance to enable tasks such as decoding conversations in real-time and manipulating external limb prostheses with haptic feedback. In this systematic review, we aim to evaluate the advances in iBCI hardware, software and functionality and describe challenges and opportunities in the iBCI field.Approach.Medline, EMBASE, PubMed and Cochrane databases were searched from inception until 13 April 2024. Primary studies reporting the use of iBCI in human subjects to restore function were included. Endpoints extracted include iBCI electrode type, iBCI implantation, decoder algorithm, iBCI effector, testing and training methodology and functional outcomes. Narrative synthesis of outcomes was done with a focus on hardware and software development trends over time. Individual patient data (IPD) was also collected and an IPD meta-analysis was done to identify factors significant to iBCI performance.Main results.93 studies involving 214 patients were included in this systematic review. The median task performance accuracy for cursor control tasks was 76.00% (Interquartile range [IQR] = 21.2), for motor tasks was 80.00% (IQR = 23.3), and for communication tasks was 93.27% (IQR = 15.3). Current advances in iBCI software include use of recurrent neural network architectures as decoders, while hardware advances such as intravascular stentrodes provide a less invasive alternative for neural recording. Challenges include the lack of standardized testing paradigms for specific functional outcomes and issues with portability and chronicity limiting iBCI usage to laboratory settings.Significance.Our systematic review demonstrated the exponential rate at which iBCIs have evolved over the past two decades. Yet, more work is needed for widespread clinical adoption and translation to long-term home-use.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信