{"title":"Decomposition of WAIC for assessing the information gain with application to educational testing.","authors":"Fang Liu, Ming-Hui Chen, Xiaojing Wang, Roeland Hancock","doi":"10.1111/bmsp.12383","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, multidimensional data are often available from educational testing. One natural issue is to identify whether more dimensional data are useful in fitting the item response data. To address this important issue, we develop a new decomposition of Widely Applicable Information Criterion (WAIC) via the posterior predictive ordinate (PPO) under the joint model for the response, response time and two additional educational testing scores. Based on this decomposition, a new model assessment criterion is then proposed, which allows us to determine which of the response time and two additional scores are most useful in fitting the response data and whether other dimensional data are further needed given that one of these dimensional data is already included in the joint model with the response data. In addition, an efficient Monte Carlo method is developed to compute PPO. An extensive simulation study is conducted to examine the empirical performance of the proposed joint model and the model assessment criterion in the psychological setting. The proposed methodology is further applied to an analysis of a real dataset from a computerized educational assessment program.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12383","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, multidimensional data are often available from educational testing. One natural issue is to identify whether more dimensional data are useful in fitting the item response data. To address this important issue, we develop a new decomposition of Widely Applicable Information Criterion (WAIC) via the posterior predictive ordinate (PPO) under the joint model for the response, response time and two additional educational testing scores. Based on this decomposition, a new model assessment criterion is then proposed, which allows us to determine which of the response time and two additional scores are most useful in fitting the response data and whether other dimensional data are further needed given that one of these dimensional data is already included in the joint model with the response data. In addition, an efficient Monte Carlo method is developed to compute PPO. An extensive simulation study is conducted to examine the empirical performance of the proposed joint model and the model assessment criterion in the psychological setting. The proposed methodology is further applied to an analysis of a real dataset from a computerized educational assessment program.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.