Daham Kim, Yoon-A Hwang, Youngsook Kim, Hye Sun Lee, Eunjung Lee, Hyunju Lee, Jung Hyun Yoon, Vivian Youngjean Park, Miribi Rho, Jiyoung Yoon, Si Eun Lee, Jin Young Kwak
{"title":"Enhancing diagnostic accuracy of thyroid nodules: integrating self-learning and artificial intelligence in clinical training.","authors":"Daham Kim, Yoon-A Hwang, Youngsook Kim, Hye Sun Lee, Eunjung Lee, Hyunju Lee, Jung Hyun Yoon, Vivian Youngjean Park, Miribi Rho, Jiyoung Yoon, Si Eun Lee, Jin Young Kwak","doi":"10.1007/s12020-025-04196-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study explores a self-learning method as an auxiliary approach in residency training for distinguishing between benign and malignant thyroid nodules.</p><p><strong>Methods: </strong>Conducted from March to December 2022, internal medicine residents underwent three repeated learning sessions with a \"learning set\" comprising 3000 thyroid nodule images. Diagnostic performances for internal medicine residents were assessed before the study, after every learning session, and for radiology residents before and after one-on-one education, using a \"test set,\" comprising 120 thyroid nodule images. Finally, all residents repeated the same test using artificial intelligence computer-assisted diagnosis (AI-CAD).</p><p><strong>Results: </strong>Twenty-one internal medicine and eight radiology residents participated. Initially, internal medicine residents had a lower area under the receiver operating characteristic curve (AUROC) than radiology residents (0.578 vs. 0.701, P < 0.001), improving post-learning (0.578 to 0.709, P < 0.001) to a comparable level with radiology residents (0.709 vs. 0.735, P = 0.17). Further improvement occurred with AI-CAD for both group (0.709 to 0.755, P < 0.001; 0.735 to 0.768, P = 0.03).</p><p><strong>Conclusion: </strong>The proposed iterative self-learning method using a large volume of ultrasonographic images can assist beginners, such as residents, in thyroid imaging to differentiate benign and malignant thyroid nodules. Additionally, AI-CAD can improve the diagnostic performance across varied levels of experience in thyroid imaging.</p>","PeriodicalId":49211,"journal":{"name":"Endocrine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12020-025-04196-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study explores a self-learning method as an auxiliary approach in residency training for distinguishing between benign and malignant thyroid nodules.
Methods: Conducted from March to December 2022, internal medicine residents underwent three repeated learning sessions with a "learning set" comprising 3000 thyroid nodule images. Diagnostic performances for internal medicine residents were assessed before the study, after every learning session, and for radiology residents before and after one-on-one education, using a "test set," comprising 120 thyroid nodule images. Finally, all residents repeated the same test using artificial intelligence computer-assisted diagnosis (AI-CAD).
Results: Twenty-one internal medicine and eight radiology residents participated. Initially, internal medicine residents had a lower area under the receiver operating characteristic curve (AUROC) than radiology residents (0.578 vs. 0.701, P < 0.001), improving post-learning (0.578 to 0.709, P < 0.001) to a comparable level with radiology residents (0.709 vs. 0.735, P = 0.17). Further improvement occurred with AI-CAD for both group (0.709 to 0.755, P < 0.001; 0.735 to 0.768, P = 0.03).
Conclusion: The proposed iterative self-learning method using a large volume of ultrasonographic images can assist beginners, such as residents, in thyroid imaging to differentiate benign and malignant thyroid nodules. Additionally, AI-CAD can improve the diagnostic performance across varied levels of experience in thyroid imaging.
期刊介绍:
Well-established as a major journal in today’s rapidly advancing experimental and clinical research areas, Endocrine publishes original articles devoted to basic (including molecular, cellular and physiological studies), translational and clinical research in all the different fields of endocrinology and metabolism. Articles will be accepted based on peer-reviews, priority, and editorial decision. Invited reviews, mini-reviews and viewpoints on relevant pathophysiological and clinical topics, as well as Editorials on articles appearing in the Journal, are published. Unsolicited Editorials will be evaluated by the editorial team. Outcomes of scientific meetings, as well as guidelines and position statements, may be submitted. The Journal also considers special feature articles in the field of endocrine genetics and epigenetics, as well as articles devoted to novel methods and techniques in endocrinology.
Endocrine covers controversial, clinical endocrine issues. Meta-analyses on endocrine and metabolic topics are also accepted. Descriptions of single clinical cases and/or small patients studies are not published unless of exceptional interest. However, reports of novel imaging studies and endocrine side effects in single patients may be considered. Research letters and letters to the editor related or unrelated to recently published articles can be submitted.
Endocrine covers leading topics in endocrinology such as neuroendocrinology, pituitary and hypothalamic peptides, thyroid physiological and clinical aspects, bone and mineral metabolism and osteoporosis, obesity, lipid and energy metabolism and food intake control, insulin, Type 1 and Type 2 diabetes, hormones of male and female reproduction, adrenal diseases pediatric and geriatric endocrinology, endocrine hypertension and endocrine oncology.