The gut-organ axis: Clinical aspects and immune mechanisms.

IF 6.2 2区 医学 Q1 ALLERGY
Naoto Fukasawa, Junya Tsunoda, Shogo Sunaga, Hiroki Kiyohara, Nobuhiro Nakamoto, Toshiaki Teratani, Yohei Mikami, Takanori Kanai
{"title":"The gut-organ axis: Clinical aspects and immune mechanisms.","authors":"Naoto Fukasawa, Junya Tsunoda, Shogo Sunaga, Hiroki Kiyohara, Nobuhiro Nakamoto, Toshiaki Teratani, Yohei Mikami, Takanori Kanai","doi":"10.1016/j.alit.2025.01.004","DOIUrl":null,"url":null,"abstract":"<p><p>The gut-brain axis exemplifies the bidirectional connection between the intestines and the brain, as evidenced by the impact of severe stress on gastrointestinal symptoms including abdominal pain and diarrhea, and conversely, the influence of abdominal discomfort on mood. Clinical observations support the notion of the gut-brain connection, including an increased prevalence of inflammatory bowel disease (IBD) in patients with depression and anxiety, as well as the association of changes in the gut microbiota with neurological disorders such as multiple sclerosis, Parkinson's disease, stroke and Alzheimer's disease. The gut and brain communicate via complex mechanisms involving inflammatory cytokines, immune cells, autonomic nerves, and gut microbiota, which contribute to the pathogenesis in certain gut and brain diseases. Two primary pathways mediate the bidirectional information exchange between the intestinal tract and the brain: signal transduction through bloodstream factors, such as bacterial metabolites and inflammatory cytokines, and neural pathways, such as neurotransmitters and inflammatory cytokines within the autonomic nervous system through the interaction between the nerve cells and beyond. In recent years, the basic mechanisms of the pathophysiology of the gut-brain axis have been gradually elucidated. Beyond the gut-brain interaction, emerging evidence suggests the influence of the gut extends to other organs, such as the liver and lungs, through intricate inter-organ communication pathways. An increasing number of reports on this clinical and basic cross-organ interactions underscore the potential for better understanding and novel therapeutic strategies targeting inter-organs networks. Further clarification of interactions between multiorgans premises transformative insights into cross-organ therapeutic strategies.</p>","PeriodicalId":48861,"journal":{"name":"Allergology International","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Allergology International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.alit.2025.01.004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0

Abstract

The gut-brain axis exemplifies the bidirectional connection between the intestines and the brain, as evidenced by the impact of severe stress on gastrointestinal symptoms including abdominal pain and diarrhea, and conversely, the influence of abdominal discomfort on mood. Clinical observations support the notion of the gut-brain connection, including an increased prevalence of inflammatory bowel disease (IBD) in patients with depression and anxiety, as well as the association of changes in the gut microbiota with neurological disorders such as multiple sclerosis, Parkinson's disease, stroke and Alzheimer's disease. The gut and brain communicate via complex mechanisms involving inflammatory cytokines, immune cells, autonomic nerves, and gut microbiota, which contribute to the pathogenesis in certain gut and brain diseases. Two primary pathways mediate the bidirectional information exchange between the intestinal tract and the brain: signal transduction through bloodstream factors, such as bacterial metabolites and inflammatory cytokines, and neural pathways, such as neurotransmitters and inflammatory cytokines within the autonomic nervous system through the interaction between the nerve cells and beyond. In recent years, the basic mechanisms of the pathophysiology of the gut-brain axis have been gradually elucidated. Beyond the gut-brain interaction, emerging evidence suggests the influence of the gut extends to other organs, such as the liver and lungs, through intricate inter-organ communication pathways. An increasing number of reports on this clinical and basic cross-organ interactions underscore the potential for better understanding and novel therapeutic strategies targeting inter-organs networks. Further clarification of interactions between multiorgans premises transformative insights into cross-organ therapeutic strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Allergology International
Allergology International ALLERGY-IMMUNOLOGY
CiteScore
12.60
自引率
5.90%
发文量
96
审稿时长
29 weeks
期刊介绍: Allergology International is the official journal of the Japanese Society of Allergology and publishes original papers dealing with the etiology, diagnosis and treatment of allergic and related diseases. Papers may include the study of methods of controlling allergic reactions, human and animal models of hypersensitivity and other aspects of basic and applied clinical allergy in its broadest sense. The Journal aims to encourage the international exchange of results and encourages authors from all countries to submit papers in the following three categories: Original Articles, Review Articles, and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信