{"title":"OPHash: learning of organ and pathology context-sensitive hashing for medical image retrieval.","authors":"Asim Manna, Rakshith Sathish, Ramanathan Sethuraman, Debdoot Sheet","doi":"10.1117/1.JMI.12.1.017503","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Retrieving images of organs and their associated pathologies is essential for evidence-based clinical diagnosis. Deep neural hashing (DNH) has demonstrated the ability to retrieve images fast on large datasets. Conventional pairwise DNH methods can focus on semantic similarity between either organs or pathology of an image pair but not on both simultaneously.</p><p><strong>Approach: </strong>We propose an organ and pathology contextual-supervised hashing approach (OPHash) learned using three types of samples (called bags) to learn accurate hash representation. Because only semantic similarity is inadequate to incorporate with these bags, we introduce relational similarity to generate identical hash codes from most similar image pairs. OPHash is trained by minimizing classification loss, two retrieval losses implemented using Cauchy cross-entropy and maximizing discriminator loss over training samples.</p><p><strong>Results: </strong>Experiments are performed with two radiology datasets derived from the publicly available datasets. OPHash achieves 24% higher mean average precision than the state-of-the-art for top-100 retrieval.</p><p><strong>Conclusion: </strong>OPHash retrieves images with semantic similarity of organs and their associated pathology. It is agnostic to image size as well. This method improves retrieval efficiency across diverse medical imaging datasets, accommodating multiple organs and pathologies. The code is available at https://github.com/asimmanna17/OPHash.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 1","pages":"017503"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11838790/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.1.017503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Retrieving images of organs and their associated pathologies is essential for evidence-based clinical diagnosis. Deep neural hashing (DNH) has demonstrated the ability to retrieve images fast on large datasets. Conventional pairwise DNH methods can focus on semantic similarity between either organs or pathology of an image pair but not on both simultaneously.
Approach: We propose an organ and pathology contextual-supervised hashing approach (OPHash) learned using three types of samples (called bags) to learn accurate hash representation. Because only semantic similarity is inadequate to incorporate with these bags, we introduce relational similarity to generate identical hash codes from most similar image pairs. OPHash is trained by minimizing classification loss, two retrieval losses implemented using Cauchy cross-entropy and maximizing discriminator loss over training samples.
Results: Experiments are performed with two radiology datasets derived from the publicly available datasets. OPHash achieves 24% higher mean average precision than the state-of-the-art for top-100 retrieval.
Conclusion: OPHash retrieves images with semantic similarity of organs and their associated pathology. It is agnostic to image size as well. This method improves retrieval efficiency across diverse medical imaging datasets, accommodating multiple organs and pathologies. The code is available at https://github.com/asimmanna17/OPHash.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.