{"title":"Prediction of Severe Fever with Thrombocytopenia Syndrome Under Future Climate Scenarios in Chuzhou, China.","authors":"Nan Li, Yuhao Li, Donglin Cheng, Longwei Li","doi":"10.1089/vbz.2024.0115","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Objective:</i></b> Severe fever with thrombocytopenia syndrome (SFTS) poses a significant public health concern in China and has the potential for severe morbidity and mortality. Previous studies on SFTS have focused primarily on analyzing its incidence under existing climate conditions, often overlooking the impacts of future climate change on the disease's distribution. Moreover, the key factors influencing SFTS transmission identified in prior research are limited and lack a comprehensive consideration of multiple environmental and socioeconomic factors in specific regions. <b><i>Methods:</i></b> In this study, by utilizing SFTS case data from Chuzhou city alongside multisource environmental variables, the maximum entropy ecological niche (MaxEnt) model was employed to identify the key climatic factors influencing the distribution of SFTS. Risk areas were projected for the present and future climate scenarios, including shared socioeconomic pathway (SSP)126, SSP245, SSP370, and SSP585. <b><i>Results:</i></b> The results indicate that (1) precipitation in the driest quarter, elevation, and precipitation in the wettest month are the most critical variables; (2) potential risk areas are situated predominantly in the central hilly region, with the total area of medium- and high-risk zones measuring 5731.86 km<sup>2</sup>, which accounts for 42.67% of the total area; (3) in future climate scenarios, the central-south and southwestern regions emerge as high-risk areas, with the maximum area of future high-risk zones reaching 6417.8398 km<sup>2</sup>, projected for the 2030s under the SSP585 scenario; and (4) the current epicenter of the SFTS risk area is located in Zhang Baling town (118°12'23″E, 32°28'56″N). Under the SSP126 and SSP370 scenarios, the epicenter exhibits minimal movement, whereas significant shifts occur under the SSP245 and SSP585 scenarios. <b><i>Conclusion:</i></b> These findings provide essential insights for formulating scientifically grounded prevention and control strategies against SFTS in Chuzhou city.</p>","PeriodicalId":23683,"journal":{"name":"Vector borne and zoonotic diseases","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vector borne and zoonotic diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vbz.2024.0115","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Severe fever with thrombocytopenia syndrome (SFTS) poses a significant public health concern in China and has the potential for severe morbidity and mortality. Previous studies on SFTS have focused primarily on analyzing its incidence under existing climate conditions, often overlooking the impacts of future climate change on the disease's distribution. Moreover, the key factors influencing SFTS transmission identified in prior research are limited and lack a comprehensive consideration of multiple environmental and socioeconomic factors in specific regions. Methods: In this study, by utilizing SFTS case data from Chuzhou city alongside multisource environmental variables, the maximum entropy ecological niche (MaxEnt) model was employed to identify the key climatic factors influencing the distribution of SFTS. Risk areas were projected for the present and future climate scenarios, including shared socioeconomic pathway (SSP)126, SSP245, SSP370, and SSP585. Results: The results indicate that (1) precipitation in the driest quarter, elevation, and precipitation in the wettest month are the most critical variables; (2) potential risk areas are situated predominantly in the central hilly region, with the total area of medium- and high-risk zones measuring 5731.86 km2, which accounts for 42.67% of the total area; (3) in future climate scenarios, the central-south and southwestern regions emerge as high-risk areas, with the maximum area of future high-risk zones reaching 6417.8398 km2, projected for the 2030s under the SSP585 scenario; and (4) the current epicenter of the SFTS risk area is located in Zhang Baling town (118°12'23″E, 32°28'56″N). Under the SSP126 and SSP370 scenarios, the epicenter exhibits minimal movement, whereas significant shifts occur under the SSP245 and SSP585 scenarios. Conclusion: These findings provide essential insights for formulating scientifically grounded prevention and control strategies against SFTS in Chuzhou city.
期刊介绍:
Vector-Borne and Zoonotic Diseases is an authoritative, peer-reviewed journal providing basic and applied research on diseases transmitted to humans by invertebrate vectors or non-human vertebrates. The Journal examines geographic, seasonal, and other risk factors that influence the transmission, diagnosis, management, and prevention of this group of infectious diseases, and identifies global trends that have the potential to result in major epidemics.
Vector-Borne and Zoonotic Diseases coverage includes:
-Ecology
-Entomology
-Epidemiology
-Infectious diseases
-Microbiology
-Parasitology
-Pathology
-Public health
-Tropical medicine
-Wildlife biology
-Bacterial, rickettsial, viral, and parasitic zoonoses