Conformational flexibility associated with remote residues regulates the kinetic properties of glutamate dehydrogenase.

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2025-03-01 DOI:10.1002/pro.70038
Barsa Kanchan Jyotshna Godsora, Parijat Das, Prasoon Kumar Mishra, Anjali Sairaman, Sandip Kaledhonkar, Narayan S Punekar, Prasenjit Bhaumik
{"title":"Conformational flexibility associated with remote residues regulates the kinetic properties of glutamate dehydrogenase.","authors":"Barsa Kanchan Jyotshna Godsora, Parijat Das, Prasoon Kumar Mishra, Anjali Sairaman, Sandip Kaledhonkar, Narayan S Punekar, Prasenjit Bhaumik","doi":"10.1002/pro.70038","DOIUrl":null,"url":null,"abstract":"<p><p>Glutamate dehydrogenase (GDH) is a pivotal metabolic enzyme in all living organisms, and some of the GDHs exhibit substrate-dependent homotropic cooperativity. However, the mode of allosteric communication during the homotropic effect in GDHs remains poorly understood. In this study, we examined two homologous GDHs, Aspergillus niger GDH (AnGDH) and Aspergillus terreus GDH (AtGDH), with differing substrate utilization kinetics to uncover the factors driving their distinct behavior. We report the crystal structures and first-ever cryo-EM structures of apo- AtGDH and AnGDH that captured arrays of conformational ensembles. A wider mouth opening (~ 21 Å) is observed for the cooperative AnGDH as compared to the non-cooperative AtGDH (~17 Å) in their apo states. A network of interactions related to the substitutions in Domain II influence structural flexibility in these GDHs. Remarkably, we have identified a distant substitution (R246 to S) in Domain II, as a part of this network, which can impact the mouth opening and converts non-cooperative AtGDH into a cooperative enzyme. Our study demonstrates that remote residues can influence structural and kinetic properties in homologous GDHs.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 3","pages":"e70038"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70038","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glutamate dehydrogenase (GDH) is a pivotal metabolic enzyme in all living organisms, and some of the GDHs exhibit substrate-dependent homotropic cooperativity. However, the mode of allosteric communication during the homotropic effect in GDHs remains poorly understood. In this study, we examined two homologous GDHs, Aspergillus niger GDH (AnGDH) and Aspergillus terreus GDH (AtGDH), with differing substrate utilization kinetics to uncover the factors driving their distinct behavior. We report the crystal structures and first-ever cryo-EM structures of apo- AtGDH and AnGDH that captured arrays of conformational ensembles. A wider mouth opening (~ 21 Å) is observed for the cooperative AnGDH as compared to the non-cooperative AtGDH (~17 Å) in their apo states. A network of interactions related to the substitutions in Domain II influence structural flexibility in these GDHs. Remarkably, we have identified a distant substitution (R246 to S) in Domain II, as a part of this network, which can impact the mouth opening and converts non-cooperative AtGDH into a cooperative enzyme. Our study demonstrates that remote residues can influence structural and kinetic properties in homologous GDHs.

与远端残基相关的构象柔韧性调节谷氨酸脱氢酶的动力学性质。
谷氨酸脱氢酶(GDH)是所有生物体内一种关键的代谢酶,其中一些 GDHs 表现出依赖底物的同向协同作用。然而,人们对 GDHs 在同向作用过程中的异构通讯模式仍然知之甚少。在本研究中,我们研究了两种同源的 GDHs--黑曲霉 GDH(AnGDH)和赤曲霉 GDH(AtGDH)--它们具有不同的底物利用动力学,以揭示驱动它们不同行为的因素。我们报告了apo- AtGDH和AnGDH的晶体结构和首次捕获构象组合阵列的低温电子显微镜结构。与非合作的 AtGDH(约 17 Å)相比,合作的 AnGDH 在其 apo 状态下观察到更宽的开口(约 21 Å)。与领域 II 中的取代相关的相互作用网络影响了这些 GDH 的结构灵活性。值得注意的是,我们发现领域 II 中的一个远端取代(R246 到 S)是这一网络的一部分,它可以影响开口,并将非合作型 AtGDH 转变为合作型酶。我们的研究表明,远端残基可以影响同源 GDH 的结构和动力学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信